日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,有一個長方體盒子,它的長是70cm,寬和高都是50cm.在A點處有一只螞蟻,它想吃到B點處的食物,那么它爬行的最短路程是多少?
          解:

          根據(jù)兩點之間,線段最短,
          有以上兩種情況:
          由勾股定理得:AB==130(cm),
          AB==130(cm),
          如圖(3)AB==10(cm)
          ∴它爬行的最短距離是10cm.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          用一塊邊長為60cm的正方形薄鋼片制作一個長方體盒子:
          (1)如果要做成一個沒有蓋的長方體盒子,可先在薄鋼片的四個角上截去四個相同的小正方形(如圖1),然后把四邊折合起來(如圖2);
          ①求做成的盒子底面積y(cm2)與截去小正方形邊長x(cm)之間的函數(shù)關(guān)系式;
          ②當做成的盒子的底面積為900cm2時,試求該盒子的容積.
          (2)如果要做成一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:
          ①必須在薄鋼片的四個角上各截去一個四邊形;(其余部分不能裁截)
          ②折合后薄鋼片既無空隙又不重疊地圍成各盒面.
          請你畫出符合上述制作方案的一種草圖(不必說明畫法與根據(jù));并求當?shù)酌娣e為精英家教網(wǎng)800cm2時,該盒子的高.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,有一塊長為m2+m,寬為2m的矩形鐵皮,將其四個角分別剪去一個邊長為
          m-12
          的正方形,剩余的部分可制成一個無蓋的長方體鐵皮盒(焊接處損失忽略不計),求這個鐵皮盒的容積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          西湖龍井茶名揚中外.小葉是某龍井茶葉有限公司產(chǎn)品包裝部門的設(shè)計師.
          如圖1是用矩形厚紙片(厚度不計)做長方體茶葉包裝盒的示意圖,陰影部分是裁剪掉的部分.沿圖中實線折疊做成的長方體紙盒的上下底面是正方形,有三處矩形形狀的“接口”用來折疊后粘貼或封蓋.
          (1)小葉用長40cm,寬34cm的矩形厚紙片,恰好能做成一個符合要求的包裝盒,盒高是盒底邊長的2.5倍,三處“接口”的寬度相等.則該茶葉盒的容積是多少?
          (2)如圖2是小葉設(shè)計出的一款茶葉包裝,它的里面是由四個圓柱體茶葉罐包裝而成的龍井茶.現(xiàn)有一張60cm×44cm的矩形厚紙片,按如圖3所示的方法設(shè)計包裝盒,用來包裝四個圓柱體茶葉罐,已知該種的茶葉罐高是底面直徑1.5倍,要求包裝盒“接口”的寬度為2cm(如有多余可裁剪),問這樣的茶葉罐底面直徑最大可以為多少?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,用一塊邊長為60cm的正方形薄鋼片制作一個有蓋的長方體盒子,制作方案要求同時符合下列兩個條件:①必須在薄鋼片的四個角上各截去一個四邊形(其余部分不能裁截);②折合后薄鋼片既無空隙,又不重疊地圍成各盒面.
          (1)請你畫出符合上述方案的一種草圖,并標出尺寸;
          (2)當盒子的高為10cm時,求該盒子的容積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,有一塊長為m2+m,寬為2m的矩形鐵皮,將其四個角分別剪去一個邊長為數(shù)學公式的正方形,剩余的部分可制成一個無蓋的長方體鐵皮盒(焊接處損失忽略不計),求這個鐵皮盒的容積.

          查看答案和解析>>

          同步練習冊答案