【題目】若平面直角坐標(biāo)系內(nèi)的點(diǎn)滿足橫、縱坐標(biāo)都為整數(shù),則把點(diǎn)
叫做 “整點(diǎn)”.例如:
、
都是“整點(diǎn)”,拋物線
(
)與
軸交于
兩點(diǎn),若該拋物線在
之間的部分與線段
所圍成的區(qū)域(包括邊界)恰有七個(gè)整點(diǎn),則
的取值范圍是( )
A.B.
C.D.
【答案】D
【解析】
首先將二次函數(shù)的表達(dá)式化為頂點(diǎn)式,確定函數(shù)的頂點(diǎn),可以直接得到三點(diǎn)必在該拋物線在
之間的部分與線段
所圍成的區(qū)域內(nèi)(包括邊界),然后向外擴(kuò)充4個(gè)整點(diǎn),找到
,最后結(jié)合圖象確定函數(shù)與x軸的交點(diǎn)A的橫坐標(biāo)范圍
,進(jìn)而求出m的范圍,一定要結(jié)合點(diǎn)
是邊界點(diǎn)時(shí),m的取值,否則會(huì)使m的范圍過(guò)大.
由題意可得
∴函數(shù)的頂點(diǎn)是
∴點(diǎn)三點(diǎn)必在該拋物線在
之間的部分與線段
所圍成的區(qū)域內(nèi)(包括邊界)
∵在此區(qū)域有7個(gè)整點(diǎn)
∴必有點(diǎn)
∴當(dāng)點(diǎn)在邊界上時(shí),
∴
與x軸的交點(diǎn)A的橫坐標(biāo)
∴
綜上所述,
故答案為:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】列方程解應(yīng)用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價(jià)促銷的原則,使生產(chǎn)的玩具能夠及時(shí)售出,據(jù)市場(chǎng)調(diào)查:每個(gè)玩具按元銷售時(shí),每天可銷售
個(gè);若銷售單價(jià)每降低元,每天可多售出
個(gè).已知每個(gè)玩具的固定成本為
元,問(wèn)這種玩具的銷售單價(jià)為多少元時(shí),廠家每天可獲利潤(rùn)
元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市教委為了讓廣大青少年學(xué)生走向操場(chǎng)、走進(jìn)自然、走到陽(yáng)光下,積極參加體育鍛煉,啟動(dòng)了“學(xué)生陽(yáng)光體育運(yùn)動(dòng)”,其中有一項(xiàng)是短跑運(yùn)動(dòng),短跑運(yùn)動(dòng)可以鍛煉人的靈活性,增強(qiáng)人的爆發(fā)力,因此張明和李亮在課外活動(dòng)中報(bào)名參加了百米訓(xùn)練小組.在近幾次百米訓(xùn)練中,教練對(duì)他們兩人的測(cè)試成績(jī)進(jìn)行了統(tǒng)計(jì)和分析,請(qǐng)根據(jù)圖表中的信息解答以下問(wèn)題:
成績(jī)統(tǒng)計(jì)分析表
(1)張明第2次的成績(jī)?yōu)?/span>__________秒;
(2)請(qǐng)補(bǔ)充完整上面的成績(jī)統(tǒng)計(jì)分析表;
(3)現(xiàn)在從張明和李亮中選擇一名成績(jī)優(yōu)秀的去參加比賽,若你是他們的教練,應(yīng)該選擇誰(shuí)? 請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,正方形中,點(diǎn)
是對(duì)角線
的中點(diǎn),點(diǎn)
是線段
上(不與
,
重合)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)
作
且
交邊
于點(diǎn)
.
(1)求證:.
(2)如圖②,若正方形的邊長(zhǎng)為2,過(guò)
作
于點(diǎn)
,在
點(diǎn)運(yùn)動(dòng)的過(guò)程中,
的長(zhǎng)度是否發(fā)生變化?若不變,試求出這個(gè)不變的值;若變化,請(qǐng)說(shuō)明理由.
(3)如圖③,用等式表示線段,
,
之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是的直徑,點(diǎn)P在BA的延長(zhǎng)線上,PD切
于點(diǎn)D,過(guò)點(diǎn)B作
,交PD的延長(zhǎng)線于點(diǎn)C,連接AD并延長(zhǎng),交BE于點(diǎn)E.
(Ⅰ)求證:AB=BE;
(Ⅱ)連結(jié)OC,如果PD=2,∠ABC=60°,求OC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線與直線
有兩個(gè)不同的交點(diǎn).下列結(jié)論:①
;②當(dāng)
時(shí),
有最小值
;③方程
有兩個(gè)不等實(shí)根;④若連接這兩個(gè)交點(diǎn)與拋物線的頂點(diǎn),恰好是一個(gè)等腰直角三角形,則
;其中正確的結(jié)論的個(gè)數(shù)是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)的坐標(biāo)為
,點(diǎn)
,
分別在
軸,
軸的正半軸上運(yùn)動(dòng),且
,下列結(jié)論:
①
②當(dāng)時(shí)四邊形
是正方形
③四邊形的面積和周長(zhǎng)都是定值
④連接,
,則
,其中正確的有( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】疫情爆發(fā),某企業(yè)準(zhǔn)備轉(zhuǎn)型生產(chǎn)口罩.該企業(yè)在市場(chǎng)上物色到兩種生產(chǎn)口罩的設(shè)備,若采購(gòu)2臺(tái)
型設(shè)備,5臺(tái)
型設(shè)備則共需要430萬(wàn)元;若采購(gòu)5臺(tái)
型設(shè)備,2臺(tái)
型設(shè)備則共需要550萬(wàn)元.已知
型設(shè)備每臺(tái)每天可以生產(chǎn)19萬(wàn)片
口罩;
型設(shè)備每臺(tái)每天可以生產(chǎn)8萬(wàn)片
口罩.
(1)求、
兩型設(shè)備的采購(gòu)單價(jià)分別是多少萬(wàn)元/臺(tái)?
(2)該企業(yè)準(zhǔn)備采購(gòu)、
兩型設(shè)備共10臺(tái),但能用來(lái)采購(gòu)設(shè)備的資金不超過(guò)700萬(wàn)元,那么如何安排采購(gòu)方案,用這些設(shè)備每天生產(chǎn)的
口罩最多?每天最多可生產(chǎn)多少萬(wàn)片
口罩?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,O為坐標(biāo)原點(diǎn),點(diǎn)B在x軸的正半軸上,四邊形OACB是平行四邊形..反比例函數(shù)
在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,交BC的中點(diǎn)F.且
.
(1)求k值和點(diǎn)C的坐標(biāo);
(2)過(guò)點(diǎn)F作EF∥OB,交OA于點(diǎn)E(如圖②),點(diǎn)P為直線EF上的一個(gè)動(dòng)點(diǎn),連接PA,PO.是否存在這樣的點(diǎn)P,使以P、O、A為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)直接寫出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com