日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】探究:如圖1和圖2,四邊形ABCD中,已知ABAD,∠BAD90°,點(diǎn)E、F分別在BCCD上,∠EAF45°

          1)①如圖1,若∠B、∠ADC都是直角,把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,使ABAD重合,直接寫出線段BE、DFEF之間的數(shù)量關(guān)系;

          ②如圖2,若∠B、∠D都不是直角,則當(dāng)∠B與∠D滿足   關(guān)系時(shí),線段BE、DFEF之間依然有①中的結(jié)論存在,請(qǐng)你寫出該結(jié)論的證明過(guò)程;

          2)拓展:如圖3,在ABC中,∠BAC90°,ABAC2,點(diǎn)D、E均在邊BC上,且∠DAE45°,若BD1,求DE的長(zhǎng).

          【答案】1)①EFBE+DF;②∠B+D180°,理由見解析;(2DE

          【解析】

          1)①根據(jù)旋轉(zhuǎn)的性質(zhì)得出AE=AG,∠BAE=DAG,BE=DG,求出∠EAF=GAF=45°,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;

          ②根據(jù)旋轉(zhuǎn)的性質(zhì)作輔助線,得出AE=AG,∠B=ADG,∠BAE=DAG,求出CD、G在一條直線上,根據(jù)SAS推出△EAF≌△GAF,根據(jù)全等三角形的性質(zhì)得出EF=GF,即可求出答案;

          2)如圖3,同理作旋轉(zhuǎn)三角形,根據(jù)等腰直角三角形性質(zhì)和勾股定理求出∠ABC=C=45°,BC=4,根據(jù)旋轉(zhuǎn)的性質(zhì)得出AF=AE,∠FBA=C=45°,∠BAF=CAE,求出∠FAD=DAE=45°,證△FAD≌△EAD,根據(jù)全等得出DF=DE,設(shè)DE=x,則DF=x,BF=CE=3x,根據(jù)勾股定理得出方程,求出x即可.

          (1)①如圖,

          ∵把ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°ADG,使ABAD重合,

          AE=AG,∠BAE=∠DAGBE=DG,∠B=∠ADG=90°

          ∵∠ADC=90°,

          ∴∠ADC+ADG=90°

          F、DG共線,

          ∵∠BAD=90°,∠EAF=45°,

          ∴∠BAE+DAF=45°

          ∴∠DAG+DAF=45°,

          即∠EAF=∠GAF=45°

          EAFGAF中,

          ∴△EAF≌△GAF(SAS),

          EF=GF

          BE=DG,

          EF=GF=DF+DG=BE+DF

          ②∠B+D=180°,

          理由是:

          如圖2,把ABEA點(diǎn)旋轉(zhuǎn)到ADG,使ABAD重合,

          AE=AG,∠B=∠ADG,∠BAE=∠DAG

          ∵∠B+ADC=180°,

          ∴∠ADC+ADG=180°

          C、D、G在一條直線上,

          與①同理得,∠EAF=∠GAF=45°

          EAFGAF

          ,

          ∴△EAF≌△GAF(SAS),

          EF=GF,

          BE=DG,

          EF=GF=BE+DF;

          故答案為:∠B+D=180°;

          (2)∵△ABC中,AB=AC=2,∠BAC=90°

          ∴∠ABC=∠C=45°,

          由勾股定理得:BC=,

          如圖3,把AECA點(diǎn)旋轉(zhuǎn)到AFB,使ABAC重合,連接DF

          AF=AE,∠FBA=∠C=45°,∠BAF=∠CAE,

          ∵∠DAE=45°,

          ∴∠FAD=∠FAB+BAD=∠CAE+BAD=∠BAC﹣∠DAE=90°45°=45°,

          ∴∠FAD=∠DAE=45°,

          FADEAD

          ∴△FAD≌△EAD(SAS),

          DF=DE

          設(shè)DE=x,則DF=x

          BC=4,

          BF=CE=41x=3x,

          ∵∠FBA=45°,∠ABC=45°

          ∴∠FBD=90°,

          由勾股定理得:DF2=BF2+BD2,

          x2=(3x)2+12

          解得:x=,

          DE=

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與坐標(biāo)軸圍成的三角形,叫做此一次函數(shù)的坐標(biāo)三角形.例如,圖中的一次函數(shù)的圖象與x,y軸分別交于點(diǎn)AB,則△OAB為此函數(shù)的坐標(biāo)三角形.

          1)求函數(shù)y=x+3的坐標(biāo)三角形的三條邊長(zhǎng);

          2)若函數(shù)y=x+bb為常數(shù))的坐標(biāo)三角形周長(zhǎng)為16,求此三角形面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在的直角三角形中,,是直角邊所在直線上的一個(gè)動(dòng)點(diǎn),連接,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),連接,

          1)如圖①,當(dāng)點(diǎn)恰好在線段上時(shí),請(qǐng)判斷線段的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;

          2)當(dāng)點(diǎn)不在直線上時(shí),如圖②、圖③,其他條件不變,(1)中結(jié)論是否成立?若成立,請(qǐng)結(jié)合圖②、圖③選擇一個(gè)給予證明;若不成立,請(qǐng)直接寫出新的結(jié)論.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖二次函數(shù)y=ax2+bx-2的圖象交x軸于A(1,0)B(2,0)兩點(diǎn),交y軸于點(diǎn)C,過(guò)A,C兩點(diǎn)畫直線.

          1)求二次函數(shù)的解析式;

          2)在平面直角坐標(biāo)系中是否存在點(diǎn)D,使以A、B、C、D為頂點(diǎn)的四邊形是平行四邊形,如果存在,請(qǐng)直接寫出點(diǎn)D的坐標(biāo),如果不存在,請(qǐng)說(shuō)明理由。

          3)若點(diǎn)QAC下方的拋物線上運(yùn)動(dòng),求以A、CQ為頂點(diǎn)的三角形的面積最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖:在△ABC中,∠C90°,AD是∠BAC的平分線,DEABEFAC上,BDDF,

          1)證明:CFEB

          2)證明:ABAF+2EB

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,M,N是以AB為直徑的O上的點(diǎn),且,弦MNAB于點(diǎn)CBM平分ABDMFBD于點(diǎn)F

          1)求證:MFO的切線;

          2)若CN3,BN4,求CM的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的對(duì)角線ACBD相交于點(diǎn)O,∠CAB的平分線交BD于點(diǎn)E,交BC于點(diǎn)F.若OE2,則CF_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】重慶一中開學(xué)初在重百商場(chǎng)第一次購(gòu)進(jìn)A、B兩種品牌的足球,購(gòu)買A品牌足球花費(fèi)了3200元,購(gòu)買B品牌足球花費(fèi)了2400元,且購(gòu)買A品牌足球數(shù)量是購(gòu)買B品牌足球數(shù)量的2倍,已知購(gòu)買一個(gè)B品牌足球比購(gòu)買一個(gè)A品牌的足球多花20元.

          1)求購(gòu)買一個(gè)A品牌、一個(gè)B品牌的足球各需多少元;

          2)重慶一中為舉辦足球聯(lián)誼賽,決定第二次購(gòu)進(jìn)AB兩種品牌足球.恰逢重百商場(chǎng)對(duì)兩種品牌足球的售價(jià)進(jìn)行調(diào)整,A品牌足球售價(jià)比第一次購(gòu)買時(shí)提高了a元(a0),B品牌足球按第一次購(gòu)買時(shí)售價(jià)的9折出售.如果第二次購(gòu)買A品牌足球的個(gè)數(shù)比第一次少2a個(gè),第二次購(gòu)買B品牌足球的個(gè)數(shù)比第一次多個(gè),則第二次購(gòu)買A、B兩種品牌足球的總費(fèi)用比第一次少320元,求a的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】數(shù)學(xué)可以讓人高雅,益智,豪情逸致,某中學(xué)為開拓學(xué)生視野,開展課外學(xué)數(shù)學(xué)活動(dòng),隨機(jī)調(diào)查了九年級(jí)部分學(xué)生一周的課外學(xué)習(xí)數(shù)學(xué)時(shí)間,并將結(jié)果繪制成兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖的信息回答下列問(wèn)題:

          1)本次調(diào)查的學(xué)生總數(shù)為____________人,被調(diào)查學(xué)生課外學(xué)習(xí)數(shù)學(xué)時(shí)間的中位數(shù)是____________小時(shí),眾數(shù)是      小時(shí);

          2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

          3)在扇形統(tǒng)計(jì)圖中,課外學(xué)習(xí)數(shù)學(xué)時(shí)間為5小時(shí)的扇形的圓心角度數(shù)是____________;

          4)九年級(jí)有學(xué)生700人,估計(jì)九年級(jí)一周課外學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)小時(shí)的學(xué)生有多少人?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案