日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          如圖,拋物線y1=ax2-2ax+b經過A(-1,0),  C(2,)兩點,與x軸交于另一點B;

            (1) 求此拋物線的解析式;

            (2) 若拋物線的頂點為M,點P為線段OB上一動點(不與點B重合),點Q在線段MB上移動,且MPQ=45°,設線段OP=x,MQ=y2,求y2x的函數關系式,并直接寫出自變量x的取值范圍;

            (3) 在同一平面直角坐標系中,兩條直線x=m,x=n分別與拋物線交于點EG,與(2)中的

             函數圖像交于點F,H。問四邊形EFHG能否為平行四邊形?若能,求mn之間的數量關系;若不能,請說明理由。


          解:(1) ∵拋物線y1=ax2-2ax+b經過A(-1,0),C(0,)兩點,∴,∴a= -

               b=,∴拋物線的解析式為y1= -x2+x+

            (2) 作MNAB,垂足為N。由y1= -x2+x+易得M(1,2), N(1,0),A(-1,0),B(3,0),∴AB=4,MN=BN=2,MB=2,MBN=45°。根據勾股定理有BM 2-BN 2=PM 2-PN 2。

             ∴(2)2-22=PM2= -(1-x)2…j,又MPQ=45°=MBP,

             ∴△MPQ~△MBP,∴PM2=MQ?MB=y2?2…k。

             由j、k得y2=x2-x+!0x<3,∴y2x的函數關系式為y2=x2-x+(0x<3)。


          (3) 四邊形EFHG可以為平行四邊形,m、n之間的數量關系是

             m+n=2(0m∠2,且m¹1)!唿cEG是拋物線y1= -x2+x+

             分別與直線x=m,x=n的交點,∴點EG坐標為

             E(m,-m2+m+),G(n,-n2+n+)。同理,點F、H坐標

             為F(m,m2-m+),H(nn2-n+)。

             ∴EF=m2-m+-(-m2+m+)=m2-2m+1,GH=n2-n+-(-n2+n+)=n2-2n+1。

             ∵四邊形EFHG是平行四邊形,EF=GH!m2-2m+1=n2-2n+1,∴(m+n-2)(m-n)=0。

             由題意知mn,∴m+n=2 (0m∠2,且m≠1)。

             因此,四邊形EFHG可以為平行四邊形,mn之間的數量關系是m+n=2 (0m∠2,且m≠1)。


          練習冊系列答案
          相關習題

          科目:初中數學 來源:2010年湖北武漢市中考數學試卷 題型:059

          如圖,拋物線y1=ax2-2axb經過A(-1,0),C(2,)兩點,與x軸交于另一點B;

          (1)求此拋物線的解析式;

          (2)若拋物線的頂點為M,點P為線段OB上一動點(不與點B重合),點Q在線段MB上移動,且∠MPQ=45°,設線段OPxMQy2,求y2與x的函數關系式,并直接寫出自變量x的取值范圍;

          (3)在同一平面直角坐標系中,兩條直線xm,xn分別與拋物線交于點E,G,與(2)中的函數圖像交于點F,H.問四邊形EFHG能否為平行四邊形?若能,求m,n之間的數量關系;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源:湖北省中考真題 題型:解答題

          如圖,拋物線y1=ax2-2ax+b經過A(-1,0),C(2,)兩點,與x軸交于另一點B;
          (1)求此拋物線的解析式;
          (2)若拋物線的頂點為M,點P為線段OB上一動點(不與點 B重合),點Q在線段MB上移動,且∠MPQ=45°,設線段OP=x,MQ=y2,求y2與x的函數關系式,并直接寫出自變量x的取值范圍;
          (3)在同一平面直角坐標系中,兩條直線x=m,x=n分別與拋物線交于點E,G,與(2)中的函數圖像交于點F,H。問四邊形EFHG能否為平行四邊形?若能,求m,n之間的數量關系;若不能,請說明理由。

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          如圖,拋物線的頂點為D,與x軸交于點A,B,與y軸交于點C,且OB = 2OC= 3.

             (1)求a,b的值;

             (2)將45°角的頂點P在線段OB上滑動(不與點B重合),該角的一邊過點D,另一邊與BD交于點Q,設P(x,0),y2=DQ,試求出y2關于x的函數關系式;

          (3)在同一平面直角坐標系中,兩條直線x = m,x = m+分別與拋物線y1交于點E,G,與y2的函數圖象交于點F,H.問點E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

          【解析】通過B(3,0),C(0,)兩點,求出拋物線的解析式,

          (2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據勾股定理得jPD2-(1-x)2=4,又因為△MPQ∽ △MBP所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數關系式

          (3)假設E、F、H、G圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標,求出EF、GH的長度,

          通過四邊形EFHG的面積求出m的值

           

          查看答案和解析>>

          科目:初中數學 來源:2011-2012學年浙江省溫州地區(qū)初三適應性考試數學卷(解析版) 題型:解答題

          如圖,拋物線的頂點為D,與x軸交于點A,B,與y軸交于點C,且OB = 2OC= 3.

             (1)求a,b的值;

             (2)將45°角的頂點P在線段OB上滑動(不與點B重合),該角的一邊過點D,另一邊與BD交于點Q,設P(x,0),y2=DQ,試求出y2關于x的函數關系式;

          (3)在同一平面直角坐標系中,兩條直線x = m,x = m+分別與拋物線y1交于點E,G,與y2的函數圖象交于點F,H.問點E、F、H、G圍成四邊形的面積能否為?若能,求出m的值;若不能,請說明理由.

          【解析】通過B(3,0),C(0,)兩點,求出拋物線的解析式,

          (2)作DN⊥AB,由y1求出AB=4,DN=BN=2,DB=2,由根據勾股定理得jPD2-(1-x)2=4,又因為△MPQ ∽ △MBP,所以kPD2=DQ´DB=y2´2,由j、k得y2x的函數關系式

          (3)假設E、F、HG圍成四邊形的面積能為,通過y1求出E、G、F、H的坐標,求出EF、GH的長度,

          通過四邊形EFHG的面積求出m的值

           

          查看答案和解析>>

          同步練習冊答案