日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,在Rt△ABC中,∠C=90°,∠ABC的平分線BD交AC于點D,DE垂直平分AB,垂足為E.求∠A的度數(shù).
          分析:根據(jù)線段垂直平分線的性質(zhì)得到DA=DB,利用等腰三角形的性質(zhì)得到∠A=∠DBA,再由BD平分∠ABC得到∠DBA=∠DBC,則∠ABC=2∠A,然后根據(jù)三角形內(nèi)角和定理計算出∠A的度數(shù).
          解答:解:∵DE垂直平分AB,
          ∴DA=DB,
          ∴∠A=∠DBA,
          ∵BD平分∠ABC,
          ∴∠DBA=∠DBC,
          ∴∠ABC=2∠A,
          ∵∠C=90°,
          ∴∠A+∠ABC=90°,
          ∴∠A+2∠A=90°,
          ∴∠A=30°.
          點評:本題考查了線段垂直平分線的性質(zhì):線段垂直平分線上的點到線段兩端點的距離相等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,過點B作BD∥AC,且BD=2AC,連接AD.試判斷△ABD的形狀,并說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•陜西)已知,如圖,在Rt△ABC中,∠C=90°,以AC為直徑的⊙O交斜邊AB于E,OD∥AB.求證:①ED是⊙O的切線;②2DE2=BE•OD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•豐臺區(qū)一模)已知:如圖,在Rt△ABC中,∠ABC=90°,以AB為直徑的⊙O交AC于點D,E是BC的中點,連結(jié)DE.
          (1)求證:DE與⊙O相切;
          (2)連結(jié)OE,若cos∠BAD=
          3
          5
          ,BE=
          14
          3
          ,求OE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,在Rt△ABC中,∠C=90°,BC=4,AC=8,點D在斜邊AB上,分別作DE⊥AC,DF⊥BC,垂足分別為E、F,得四邊形DECF,設(shè)DE=x,DF=y.
          (1)求出cosB的值;
          (2)用含y的代數(shù)式表示AE;
          (3)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
          (4)設(shè)四邊形DECF的面積為S,求出S的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知,如圖,在Rt△ABC中,∠C=90°,AC=15,BC=20,求斜邊AB上的高CD.

          查看答案和解析>>

          同步練習(xí)冊答案