日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知m2+n2-14m+2n+50=0,求m與n的值.
          分析:將已知等式左邊50變形為1+49,重新結(jié)合并利用完全平方公式變形,根據(jù)兩非負(fù)數(shù)之和為0,兩非負(fù)數(shù)分別為0求出m與n的值.
          解答:解:m2+n2-14m+2n+50=0變形得:(m2-14m+49)+(n22n+1)=(m-7)2+(n+1)2=0,
          ∴m-7=0且n+1=0,
          解得:m=7,n=-1.
          點(diǎn)評:此題考查了配方法的應(yīng)用,以及非負(fù)數(shù)的性質(zhì),熟練掌握完全平方公式是解本題的關(guān)鍵.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          18、已知m2+n2-6m+10n+34=0,則m+n=
          -2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

          閱讀與理解:
          (1)先閱讀下面的解題過程:
          分解因式:a2-6a+5
          解:方法(1)原式=a2-a-5a+5
          =(a2-a)+(-5a+5)
          =a(a-1)-5(a-1)
          =(a-1)(a-5)
          方法(2)原式=a2-6a+9-4
          =(a-3)2-22
          =(a-3+2)(a-3-2)
          =(a-1)(a-5)
          再請你參考上面一種解法,對多項(xiàng)式x2+4x+3進(jìn)行因式分解;
          (2)閱讀下面的解題過程:
          已知m2+n2-4m+6n+13=0,試求m與n的值.
          解:由已知得:m2-4m+4+n2+6n+9=0
          因此得到:(m-2)2+(n+3)2=0
          所以只有當(dāng)(m-n)=0并且(n+3)=0上式才能成立.
          因而得:m=2 并且 n=-3
          請你參考上面的解題方法解答下面的問題:
          已知:x2+y2+2x-4y+5=0,試求xy的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:解答題

          已知m2+n2-14m+2n+50=0,求m與n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知m2+n2-14m+2n+50=0,求m與n的值.

          查看答案和解析>>

          同步練習(xí)冊答案