日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,AB為⊙O的直徑,CB,CD分別切⊙O于點(diǎn)B,D,CD交BA的延長線于點(diǎn)E,CO的延長線交⊙O于點(diǎn)G,EF⊥OG于點(diǎn)F.
          (1)求證:∠FEB=∠ECF;
          (2)若BC=6,DE=4,求EF的長.

          【答案】
          (1)證明:∵CB,CD分別切⊙O于點(diǎn)B,D,

          ∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,

          ∴∠BCO+∠COB=90°,

          ∵EF⊥OG,

          ∴∠FEB+∠FOE=90°,

          而∠COB=∠FOE,

          ∴∠FEB=∠ECF;


          (2)解:連接OD,如圖,

          ∵CB,CD分別切⊙O于點(diǎn)B,D,

          ∴CD=CB=6,OD⊥CE,

          ∴CE=CD+DE=6+4=10,

          在Rt△BCE中,BE= =8,

          設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,

          在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,

          ∴OE=8﹣3=5,

          在Rt△OBC中,OC= =3 ,

          ∵∠COB=∠FOE,

          ∴△OEF∽△OCB,

          = ,即 = ,

          ∴EF=2


          【解析】(1)利用切線長定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切線的性質(zhì)得OB⊥BC,則∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)連接OD,如圖,利用切線長定理和切線的性質(zhì)得到CD=CB=6,OD⊥CE,則CE=10,利用勾股定理可計(jì)算出BE=8,設(shè)⊙O的半徑為r,則OD=OB=r,OE=8﹣r,在Rt△ODE中,根據(jù)勾股定理得r2+42=(8﹣r)2 , 解得r=3,所以O(shè)E=5,OC=3 ,然后證明△OEF∽△OCB,利用相似比可計(jì)算出EF的長.
          【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握垂徑定理(垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧)的相關(guān)知識才是答題的關(guān)鍵.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一次函數(shù)ykx+b的圖象如圖所示,

          (1)求出這個函數(shù)關(guān)系式.

          (2)圖象上有一點(diǎn)P(4,m),求m的值.

          (3)判斷點(diǎn)(﹣4,3)和 (6,﹣6)是否在此直線上.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在ABC中,AB﹦AC,BD、CE分別是所在角的平分線,ANBDN點(diǎn),AMCEM點(diǎn)。求證:AM﹦AN

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知EF∥GH,A、DGH上的兩點(diǎn),M、BEF上的兩點(diǎn),延長AM于點(diǎn)C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB為⊙O的內(nèi)接正多邊形的一邊,已知∠OAB=70°,則這個正多邊形的內(nèi)角和為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】把下列各數(shù)分別填入相應(yīng)的集合內(nèi):

          ﹣2.5,0,8,﹣2,,, ﹣0.5252252225…(每兩個5之間依次增加12).

          (1)正數(shù)集合:{ …};

          (2)負(fù)數(shù)集合:{ …};

          (3)整數(shù)集合:{ …};

          (4)無理數(shù)集合:{ …}.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)C是線段AB的中點(diǎn),D是線段AB的五等分點(diǎn),若CD=6cm.

          1)求線段AB的長;

          2)若AE=DE,求線段EC的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我市某重點(diǎn)中學(xué)校團(tuán)委、學(xué)生會發(fā)出倡議,在初中各年級捐款購買書籍送給我市貧困地區(qū)的學(xué)校.初一年級利用捐款買甲、乙兩種自然科學(xué)書籍若干本,用去5324元;初二年級買了A、B兩種文學(xué)書籍若干本,用去4840元,其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書與B種書的單價相同,乙種書與A種書的單價相同.若甲、乙兩種書的單價之和為121元,則初一和初二兩個年級共向貧困地區(qū)的學(xué)校捐獻(xiàn)了________本書.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某公司到果園基地購買某種優(yōu)質(zhì)水果,慰問醫(yī)務(wù)工作者,果園基地對購買量在3000千克以上(含3000千克)的有兩種銷售方案,甲方案:每千克9元,由基地送貨上門.乙方案:每千克8元,由顧客自己租車運(yùn)回,已知該公司租車從基地到公司的運(yùn)輸費(fèi)為5000元.

          (1)分別寫出該公司兩種購買方案的付款y(元)與所購買的水果質(zhì)量x(千克)之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.

          (2)依據(jù)購買量判斷,選擇哪種購買方案付款最少?并說明理由.

          查看答案和解析>>

          同步練習(xí)冊答案