日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰三角形ABC中,AB=AC,點D在BA的延長線上,BC=24,

          1)求AB的長;

          2AD=6.5,求的余切值

          【答案】(1)13(2)

          【解析】試題分析:

          1過點AAEBC于點E,結(jié)合AB=AC,BC=24可得BE=12,在RtAEB中,由sinABC= 設(shè)AE=5k,AB=13k,由勾股定理可得解得BE=12k=12,由此可得k=1,從而可得AB=13;

          2)過點DDFBC于點F,則易得BD=19.5,AEDF,從而可得結(jié)合AE=5,BE=12,AB=13即可求得DF=BF=18,由此可得CF=BC-BF=6,結(jié)合∠DFC=90°即可得到cotDCB= .

          試題解析:

          (1)過點AAE⊥BC,垂足為點E

          AB=AC,

          BE=BC=12,

          RtABE中,AEB=90°,sinABC=

          設(shè)AE=5k,AB=13k,∵AB2=AE2+BE2

          ∴169k2=25k2+BE2,解得BE=12K=12,

          ∴k=1,

          ∴AE=5AB=13;

          2)過點DDF⊥BC垂足為點F,

          ∵AD=6.5,AB=13,

          ∴BD=AB+AD=19.5

          ∵AE⊥BC,DF⊥BC

          ∴ ∠AEB=∠DFB=90°,

          ∴AE∥DF,

          ∵ AE=5,BE=12,AB=13

          DF=,BF=18

          ∴CF=BC=BF=6,

          Rt△DCF中,∠DFC=90°

          cotDCB= .

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,一次函數(shù)y-x+b的圖象與x軸,y軸分別交于點A,B,與一次函數(shù)yx的圖象交于點M,點M的橫坐標為,在x軸上有一點Pa,0),過點Px軸的垂線,分別交一次函數(shù)y-x+b和一次函數(shù)yx的圖象于點CD

          1)點M的縱坐標是   ;b的值是   

          2)求線段AB的長;

          3)當CDAB時,請直接寫出a的值.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為了貫徹落實市委政府提出的精準扶貧精神,某校特制定了一系列幫扶A、B兩貧困村的計劃,現(xiàn)決定從某地運送152箱魚苗到A、B兩村養(yǎng)殖,若用大小貨車共15輛,則恰好能一次性運完這批魚苗,已知這兩種大小貨車的載貨能力分別為12/輛和8/輛,其運往A、B兩村的運費如表:

          車型

          目的地

          A村(元/輛)

          B村(元/輛)

          大貨車

          800

          900

          小貨車

          400

          600

          (1)求這15輛車中大小貨車各多少輛?

          (2)現(xiàn)安排其中10輛貨車前往A村,其余貨車前往B村,設(shè)前往A村的大貨車為x輛,前往A、B兩村總費用為y元,試求出yx的函數(shù)解析式.

          (3)在(2)的條件下,若運往A村的魚苗不少于100箱,請你寫出使總費用最少的貨車調(diào)配方案,并求出最少費用.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖1,已知函數(shù)yx+2x軸交于點A,與y軸交于點B,點C與點A關(guān)于y軸對稱.

          1)求直線BC的函數(shù)解析式;

          2)設(shè)點Mx軸上的一個動點,過點My軸平行線,交直線AB于點P,交直線BC于點Q

          ①若PQB的面積為,求點M的坐標:

          ②在①的條件下,在直線PQ上找一點R,使得MOR≌△MOQ,直接寫出點R的坐標;

          3)連接BM,如圖2.若∠BMP=∠BAC,直接寫出點P的坐標.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】我國古代偉大的數(shù)學家劉徽將勾股形(古人稱直角三角形為勾股形)分割成一個正方形和兩對全等的直角三角形,得到一個恒等式.后人借助這種分割方法所得的圖形證明了勾股定理,如圖所示的矩形由兩個這樣的圖形拼成,若a=3,b=4,則該矩形的面積為(

          A. 20 B. 24 C. D.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】小剛在實踐課上要做一個如圖1所示的折扇,折扇扇面的寬度AB是骨柄長OA的,折扇張開的角度為120°小剛現(xiàn)要在如圖2所示的矩形布料上剪下扇面,且扇面不能拼接,已知矩形布料長為24cm,寬為21cm小剛經(jīng)過畫圖、計算在矩形布料上裁剪下了最大的扇面,若不計裁剪和粘貼時的損耗,此時扇面的寬度AB為( )

          A21cm B20 cm C19cm D18cm

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】如圖,長方形OABC在平面直角坐標系內(nèi)(0為坐標原點),點Ax軸上,點Cy軸上,點B的坐標分別為(22),點EBC的中點,點HOA上,且AH,過點H且平行于y軸的HGEB交于點G,現(xiàn)將長方形折疊,使頂點C落在HG上的D點處,折痕為EF,點F為折痕與y軸的交點.

          (1)求點D的坐標;

          (2)求折痕EF所在直線的函數(shù)表達式;

          (3)若點P在直線AB上,當PFD為等腰三角形時,試問滿足條件的點P有幾個?請求出點P的坐標,并寫出解答過程.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】為推進垃圾分類,推動綠色發(fā)展,某工廠購進甲、乙兩種型號的機器人用來進行垃圾分類,甲型機器人比乙型機器人每小時多分20kg,甲型機器人分類800kg垃圾所用的時間與乙型機器人分類600kg垃圾所用的時間相等。

          1)兩種機器人每小時分別分類多少垃圾?

          2)現(xiàn)在兩種機器人共同分類700kg垃圾,工作2小時后甲型機器人因機器維修退出,求甲型機器人退出后乙型機器人還需工作多長時間才能完成?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          【題目】一個正比例函數(shù)與一個一次函數(shù)圖象交于點,且.

          1)求這兩個函數(shù)的表達式;

          2)直線與直線、構(gòu)不成三角形,直接寫出的值 .

          查看答案和解析>>

          同步練習冊答案