日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2011•新華區(qū)一模)解方程組:
          3x+2y=5             ①
          5x-4y=1              ②
          分析:利用加減消元法即可求得原方程組的解,將①×2+②,即可消去y的值,繼而求得x的值,則可求得求得原方程組的解.
          解答:解:①×2,得:6x+4y=10…③
          ②+③,得:11x=11.
          ∴x=1. …4分
          把x=1代入①,得:3×1+2y=5
          ∴y=1.…7分
          所以此方程組的解是:
          x=1
          y=1
          .…8分
          點(diǎn)評(píng):此題考查了二元一次方程組的解法.此題難度不大,解題的關(guān)鍵是注意掌握方程組解法中的加減消元法和代入消元法,注意轉(zhuǎn)化思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•新華區(qū)一模)在圖中的方格紙中,每個(gè)小方格都是邊長為1個(gè)單位長的正方形,△ABC的3個(gè)頂點(diǎn)都在格點(diǎn)上(每個(gè)小方格的頂點(diǎn)叫格點(diǎn)).
          (1)畫出△A1B1C1,使得△A1B1C1與ABC關(guān)于直線l對(duì)稱;
          (2)畫出ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的A2B2C2,并求點(diǎn)A旋轉(zhuǎn)到A2所經(jīng)過的路線長;
          (3)A1B1C1與A2B2C2
          軸對(duì)稱
          軸對(duì)稱
          .(填”中心對(duì)稱“或”軸對(duì)稱“)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•新華區(qū)一模)我們知道:根據(jù)二次函數(shù)的圖象,可以直接確定二次函數(shù)的最大(。┲担桓鶕(jù)“兩點(diǎn)之間,線段最短”,并運(yùn)用軸對(duì)稱的性質(zhì),可以在一條直線上找到一點(diǎn),使得此點(diǎn)到這條直線同側(cè)兩定點(diǎn)之間的距離之和最短.
          這種數(shù)形結(jié)合的思想方法,非常有利于解決一些數(shù)學(xué)和實(shí)際問題中的最大(小)值問題.請(qǐng)你嘗試解決一下問題:
          (1)在圖1中,拋物線所對(duì)應(yīng)的二次函數(shù)的最大值是
          4
          4
          ;
          (2)在圖2中,相距3km的A、B兩鎮(zhèn)位于河岸(近似看做直線l)的同側(cè),且到河岸的距離AC=1千米,BD=2千米,現(xiàn)要在岸邊建一座水塔,分別直接給兩鎮(zhèn)送水,為使所用水管的長度最短,請(qǐng)你:
          ①作圖確定水塔的位置;
          ②求出所需水管的長度(結(jié)果用準(zhǔn)確值表示)
          (3)已知x+y=6,求
          x2+9
          +
          y2+25
          的最小值;
          此問題可以通過數(shù)形結(jié)合的方法加以解決,具體步驟如下:
          ①如圖3中,作線段AB=6,分別過點(diǎn)A、B,作CA⊥AB,DB⊥AB,使得CA=
          3
          3
          ,DB=
          5
          5
          ;
          ②在AB上取一點(diǎn)P,可設(shè)AP=
          x
          x
          ,BP=
          y
          y

          x2+9
          +
          y2+25
          的最小值即為線段
          PC
          PC
          和線段
          PD
          PD
          長度之和的最小值,最小值為
          10
          10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•新華區(qū)一模)在矩形ABCD中,E是BC邊上的動(dòng)點(diǎn)(點(diǎn)E不與端點(diǎn)B、C重合),以AE為邊,在直線BC的上方作矩形AEFG,使頂點(diǎn)G恰好落在射線CD上,連接AC、FC,并過點(diǎn)F作FH⊥BC,交BC的延長線于點(diǎn)H.
          (1)如圖1,當(dāng)AB=BC時(shí);
          ①求證:矩形AEFG是正方形;
          ②猜想AC、FC的位置關(guān)系,并證明你的猜想.
          (2)如圖2,當(dāng)AB≠BC時(shí),上面的猜想還成立嗎?若不成立,請(qǐng)說明理由;若成立,請(qǐng)給出證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2011•新華區(qū)一模)如圖,在直角梯形ABCD中,∠A=90°,AD=4,CD=3,BC=5,點(diǎn)E從A點(diǎn)出發(fā)以每秒2個(gè)單位長的速度向B點(diǎn)運(yùn)動(dòng),點(diǎn)F從C點(diǎn)同時(shí)出發(fā),以每秒1個(gè)單位長的速度向D點(diǎn)運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒,當(dāng)一個(gè)動(dòng)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng),過點(diǎn)F作FH⊥AB于點(diǎn)P,連接BD交FP于點(diǎn)O,連接OE.
          (1)底邊AB=
          6
          6
          ;
          (2)設(shè)△BOE的面積為S△BOE
          ①求S△BOE與時(shí)間t的函數(shù)關(guān)系式;
          ②當(dāng)t為何值時(shí),S△BOE=
          16
          S梯形ABCD
          (3)是否存在點(diǎn)E,使得△BOE為直角三角形;若存在,求出t的值;若不存在,請(qǐng)說明理由;
          (4)是否存在某一時(shí)刻,使得OE∥BC?若存在,直接寫出t的值;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案