日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 15.如圖①,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE相交于點(diǎn)M,連接CM.
          (1)求證:BE=AD;
          (2)用含α的式子表示∠AMB的度數(shù);
          (3)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQ,PQ,如圖②,判斷△CPQ的形狀,并加以證明.

          分析 (1)由CA=CB,CD=CE,∠ACB=∠DCE=α,利用SAS即可判定△ACD≌△BCE;
          (2)根據(jù)△ACD≌△BCE,得出∠CAD=∠CBE,再根據(jù)∠AFC=∠BFH,即可得到∠AMB=∠ACB=α;
          (3)先根據(jù)SAS判定△ACP≌△BCQ,再根據(jù)全等三角形的性質(zhì),得出CP=CQ,∠ACP=∠BCQ,最后根據(jù)∠ACB=90°即可得到∠PCQ=90°,進(jìn)而得到△PCQ為等腰直角三角形.

          解答 解:(1)如圖1,∵∠ACB=∠DCE=α,
          ∴∠ACD=∠BCE,
          在△ACD和△BCE中,
          $\left\{\begin{array}{l}{CA=CB\\;}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
          ∴△ACD≌△BCE(SAS),
          ∴BE=AD;

          (2)如圖1,∵△ACD≌△BCE,
          ∴∠CAD=∠CBE,
          ∵△ABC中,∠BAC+∠ABC=180°-α,
          ∴∠BAM+∠ABM=180°-α,
          ∴△ABM中,∠AMB=180°-(180°-α)=α;

          (3)△CPQ為等腰直角三角形.
          證明:如圖2,由(1)可得,BE=AD,
          ∵AD,BE的中點(diǎn)分別為點(diǎn)P、Q,
          ∴AP=BQ,
          ∵△ACD≌△BCE,
          ∴∠CAP=∠CBQ,
          在△ACP和△BCQ中,
          $\left\{\begin{array}{l}{CA=CB}\\{∠CAP=∠CBQ}\\{AP=BQ}\end{array}\right.$,
          ∴△ACP≌△BCQ(SAS),
          ∴CP=CQ,且∠ACP=∠BCQ,
          又∵∠ACP+∠PCB=90°,
          ∴∠BCQ+∠PCB=90°,
          ∴∠PCQ=90°,
          ∴△CPQ為等腰直角三角形.

          點(diǎn)評(píng) 本題屬于三角形綜合題,主要考查了全等三角形的判定與性質(zhì),等腰直角三角形的判定以及三角形內(nèi)角和定理的綜合應(yīng)用.等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì),還具備等腰三角形和直角三角形的所有性質(zhì).解題時(shí)注意掌握全等三角形的對(duì)應(yīng)邊相等,對(duì)應(yīng)角相等的運(yùn)用.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          10.某市出租車收費(fèi)標(biāo)準(zhǔn)是:起步價(jià)為8元,3千米后每千米為2元,若某人乘坐了x(x>5)千米.
          (1)用含x的代數(shù)式表示他應(yīng)支付的車費(fèi).
          (2)行駛30千米,應(yīng)付多少錢(qián)?
          (3)若他支付了46元,你能算出他乘坐的路程嗎?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          6.已知⊙O的半徑為6,A為線段PO的中點(diǎn),當(dāng)OP=10時(shí),點(diǎn)A與⊙O的位置關(guān)系為( 。
          A.在圓上B.在圓外C.在圓內(nèi)D.不確定

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          3.若|a-2|+(b-5)2=0,則點(diǎn)P (a,b)關(guān)于x軸對(duì)稱的點(diǎn)的坐標(biāo)為(2,-5).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

          10.先化簡(jiǎn),再求值:-2x2+(3x2-2x)-5(x2-x+1),其中x=-$\frac{1}{2}$.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          20.已知△ABC,△EFG均是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是邊BC、EF的中點(diǎn).
          (Ⅰ)如圖①,這兩個(gè)等邊三角形的高為2$\sqrt{3}$;
          (Ⅱ)如圖②,直線AG,F(xiàn)C相交于點(diǎn)M,當(dāng)△EFG繞點(diǎn)D旋轉(zhuǎn)時(shí),線段BM長(zhǎng)的最小值是2$\sqrt{3}$-2.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          7.如圖,有一個(gè)邊長(zhǎng)為4cm的正六邊形,若要剪一張圓形紙片完全蓋住這個(gè)圖形,則這個(gè)圓形紙片的最小直徑是(  )
          A.4cmB.8cmC.2$\sqrt{3}$cmD.4$\sqrt{3}$cm

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題

          4.下面說(shuō)法中錯(cuò)誤的是( 。
          A.各邊相等,各角也相等的多邊形是正多邊形
          B.單項(xiàng)式-2xy的系數(shù)是-2
          C.數(shù)軸是一條特殊的直線
          D.多項(xiàng)式ab2-3a2+1次數(shù)是5次

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

          5.在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(4,0),點(diǎn)B(0,3)把△ABO繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°,得△A′BO′,點(diǎn)A、O旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)為A′、O′,那么AA′的長(zhǎng)為5$\sqrt{2}$.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案