日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•雅安)如圖,AB是⊙O的直徑,BC為⊙O的切線,D為⊙O上的一點(diǎn),CD=CB,延長(zhǎng)CD交BA的延長(zhǎng)線于點(diǎn)E.
          (1)求證:CD為⊙O的切線;
          (2)若BD的弦心距OF=1,∠ABD=30°,求圖中陰影部分的面積.(結(jié)果保留π)
          分析:(1)首先連接OD,由BC是⊙O的切線,可得∠ABC=90°,又由CD=CB,OB=OD,易證得∠ODC=∠ABC=90°,即可證得CD為⊙O的切線;
          (2)在Rt△OBF中,∠ABD=30°,OF=1,可求得BD的長(zhǎng),∠BOD的度數(shù),又由S陰影=S扇形OBD-S△BOD,即可求得答案.
          解答:(1)證明:連接OD,
          ∵BC是⊙O的切線,
          ∴∠ABC=90°,
          ∵CD=CB,
          ∴∠CBD=∠CDB,
          ∵OB=OD,
          ∴∠OBD=∠ODB,
          ∴∠ODC=∠ABC=90°,
          即OD⊥CD,
          ∵點(diǎn)D在⊙O上,
          ∴CD為⊙O的切線;

          (2)解:在Rt△OBF中,
          ∵∠ABD=30°,OF=1,
          ∴∠BOF=60°,OB=2,BF=
          3
          ,
          ∵OF⊥BD,
          ∴BD=2BF=2
          3
          ,∠BOD=2∠BOF=120°,
          ∴S陰影=S扇形OBD-S△BOD=
          120π×22
          360
          -
          1
          2
          ×2
          3
          ×1=
          4
          3
          π-
          3
          點(diǎn)評(píng):此題考查了切線的判定與性質(zhì)、垂徑定理以及扇形的面積.此題難度適中,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•雅安)如圖,DE是△ABC的中位線,延長(zhǎng)DE至F使EF=DE,連接CF,則S△CEF:S四邊形BCED的值為( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•雅安)如圖,在?ABCD中,E在AB上,CE、BD交于F,若AE:BE=4:3,且BF=2,則DF=
          14
          3
          14
          3
          ..

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•雅安)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b(k≠0)的圖象與反比例函數(shù)y=
          mx
          (m≠0)的圖象交于A、B兩點(diǎn),與x軸交于C點(diǎn),點(diǎn)A的坐標(biāo)為(n,6),點(diǎn)C的坐標(biāo)為(-2,0),且tan∠ACO=2.
          (1)求該反比例函數(shù)和一次函數(shù)的解析式;
          (2)求點(diǎn)B的坐標(biāo);
          (3)在x軸上求點(diǎn)E,使△ACE為直角三角形.(直接寫出點(diǎn)E的坐標(biāo))

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2013•雅安)如圖,已知拋物線y=ax2+bx+c經(jīng)過(guò)A(-3,0),B(1,0),C(0,3)三點(diǎn),其頂點(diǎn)為D,對(duì)稱軸是直線l,l與x軸交于點(diǎn)H.
          (1)求該拋物線的解析式;
          (2)若點(diǎn)P是該拋物線對(duì)稱軸l上的一個(gè)動(dòng)點(diǎn),求△PBC周長(zhǎng)的最小值;
          (3)如圖(2),若E是線段AD上的一個(gè)動(dòng)點(diǎn)( E與A、D不重合),過(guò)E點(diǎn)作平行于y軸的直線交拋物線于點(diǎn)F,交x軸于點(diǎn)G,設(shè)點(diǎn)E的橫坐標(biāo)為m,△ADF的面積為S.
          ①求S與m的函數(shù)關(guān)系式;
          ②S是否存在最大值?若存在,求出最大值及此時(shí)點(diǎn)E的坐標(biāo); 若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案