日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在矩形ABCD中,點O在對角線AC上,以O(shè)A的長為半徑的圓O與AD、AC分別交于點E、F,且∠ACB=∠DCE.
          (1)判斷直線CE與⊙O的位置關(guān)系,并證明你的結(jié)論;
          (2)若tan∠ACB= ,BC=2,求⊙O的半徑.

          【答案】
          (1)解:直線CE與⊙O相切

          理由如下:

          ∵四邊形ABCD是矩形,

          ∴BC∥AD,∠ACB=∠DAC;

          又∵∠ACB=∠DCE,

          ∴∠DAC=∠DCE;

          連接OE,則∠DAC=∠AEO=∠DCE;

          ∵∠DCE+∠DEC=90°

          ∴∠AE0+∠DEC=90°

          ∴∠OEC=90°,即OE⊥CE.

          又OE是⊙O的半徑,

          ∴直線CE與⊙O相切.


          (2)解:∵tan∠ACB= = ,BC=2,

          ∴AB=BCtan∠ACB= ,

          ∴AC= ;

          又∵∠ACB=∠DCE,

          ∴tan∠DCE=tan∠ACB= ,

          ∴DE=DCtan∠DCE=1;

          方法一:在Rt△CDE中,CE= = ,

          連接OE,設(shè)⊙O的半徑為r,則在Rt△COE中,CO2=OE2+CE2,即 =r2+3

          解得:r=

          方法二:AE=AD﹣DE=1,過點O作OM⊥AE于點M,則AM= AE=

          在Rt△AMO中,OA= = ÷ =


          【解析】(1)連接OE.欲證直線CE與⊙O相切,只需證明∠CEO=90°,即OE⊥CE即可;(2)在直角三角形ABC中,根據(jù)三角函數(shù)的定義可以求得AB= ,然后根據(jù)勾股定理求得AC= ,同理知DE=1; 方法一、在Rt△COE中,利用勾股定理可以求得CO2=OE2+CE2 , 即 =r2+3,從而易得r的值;
          方法二、過點O作OM⊥AE于點M,在Rt△AMO中,根據(jù)三角函數(shù)的定義可以求得r的值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,直線l1∥l2∥l3 , 且l1與l2的距離為1,l2與l3的距離為2,等腰△ABC的頂點分別在直線l1、l2 , l3上,AB=AC,∠BAC=120°,則等腰三角形的腰長為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】通過學(xué)習(xí),同學(xué)們已經(jīng)體會到靈活運用乘法公式使整式的乘法運算方便、快捷.相信通過對下面材料的學(xué)習(xí)、探究,會使你大開眼界,并獲得成功的喜悅.

          例:用簡便方法計算:

          解:

          .

          (1)例題求解過程中,第②步變形是利用___________(填乘法公式的名稱).

          (2)用簡便方法計算:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知四邊形ABCD是平行四邊形,BC=3AB,A,B兩點的坐標(biāo)分別是(﹣1,0),(0,2),C,D兩點在反比例函數(shù)y= (x<0)的圖象上,則k的值等于

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】按照有關(guān)規(guī)定:距高鐵軌道 200米以內(nèi)的區(qū)域內(nèi)不宜臨路新建學(xué)校、醫(yī)院、敬老院和集中住宅區(qū)等噪聲敏感建筑物.
          如圖是一個小區(qū)平面示意圖,矩形ABEF為一新建小區(qū),直線MN為高鐵軌道,C、D是直線MN上的兩點,點C、A、B在一直線上,且DA⊥CA,∠ACD=30°.小王看中了①號樓A單元的一套住宅,與售樓人員的對話如下:

          (1)小王心中一算,發(fā)現(xiàn)售樓人員的話不可信,請你用所學(xué)的數(shù)學(xué)知識說明理由;
          (2)若一列長度為228米的高鐵以252千米/小時的速度通過時,則A單元用戶受到影響時間有多長?
          (溫馨提示: ≈1.4, ≈1.7, ≈6.1)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】定義:如圖1,點M,N把線段AB分割成AM,MN和BN,若以AM,MN,BN為邊的三角形是一個直角三角形,則稱點M,N是線段AB的勾股分割點

          (1)已知點M,N是線段AB的勾股分割點,若AM=3,MN=4求BN的長;
          (2)已知點C是線段AB上的一定點,其位置如圖2所示,請在BC上畫一點D,使C,D是線段AB的勾股分割點(要求尺規(guī)作圖,保留作圖痕跡,畫出一種情形即可)
          (3)如圖3,正方形ABCD中,M,N分別在BC,DC上,且BM≠DN,∠MAN=45°,AM,AN分別交BD于E,F(xiàn)

          求證:①E、F是線段BD的勾股分割點;
          ②△AMN的面積是△AEF面積的兩倍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】做大小兩個長方體紙盒,尺寸如下(單位cm

          (1)做這兩個紙盒共用料多少cm2?

          (2)做大紙盒比做小紙盒多用料多少cm2

          (3)如果a=8,b=6,c=5,24個小紙盒包裝成一個長方體,這個長方體的表面積的最小值為________cm2

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC三個定點坐標(biāo)分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).

          (1)請畫出△ABC關(guān)于y軸對稱的△A1B1C1;
          (2)以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2 , 請在第三象限內(nèi)畫出△A2B2C2 , 并求出 的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:
          ①b2>4ac;
          ②abc>0;
          ③2a﹣b=0;
          ④8a+c<0;
          ⑤9a+3b+c<0.
          其中結(jié)論正確的是 . (填正確結(jié)論的序號)

          查看答案和解析>>

          同步練習(xí)冊答案