日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖1,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,AC=8,BD=6.現(xiàn)有兩動(dòng)點(diǎn)P、Q分別從A、C兩點(diǎn)同時(shí)出發(fā),點(diǎn)P以每秒1個(gè)單位長(zhǎng)的速度由點(diǎn)A向點(diǎn)D做勻速運(yùn)動(dòng),點(diǎn)Q沿折線CB—BA向點(diǎn)A做勻速運(yùn)動(dòng).
          (1)點(diǎn)P將要運(yùn)行路徑AD的長(zhǎng)度為     ;點(diǎn)Q將要運(yùn)行的路徑折線CB—BA的長(zhǎng)度為        .
          (2)當(dāng)點(diǎn)Q在BA邊上運(yùn)動(dòng)時(shí),若點(diǎn)Q的速度為每秒2個(gè)單位長(zhǎng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
          ①求△APQ的面積S關(guān)于t的函數(shù)關(guān)系式,并求自變量t的取范圍;
          ②求當(dāng)t為何值時(shí),S有最大值,最大值是多少?
          (3)如圖2,若點(diǎn)Q的速度為每秒a個(gè)單位長(zhǎng)(a≤),當(dāng)t =4秒時(shí):
          ①此時(shí)點(diǎn)Q是在邊CB上,還是在邊BA上呢?
          ②△APQ是等腰三角形,請(qǐng)求出a的值.
          (1)5;10;(2)(≤t<5);,6;(3)CB,

          試題分析:(1)根據(jù)菱形的性質(zhì)可知AC⊥BD,且AC與BD互相平分,再根據(jù)勾股定理即可求出菱形的邊長(zhǎng);
          (2)①當(dāng)0<t≤時(shí),由題意,得AP=t,點(diǎn)Q在BC上運(yùn)動(dòng),過(guò)點(diǎn)B作BE⊥AD,垂足為E,由直角三角形的性質(zhì)求出BE的長(zhǎng),由三角形的面積公式可得到S與t的關(guān)系式;
          ②當(dāng)≤t<5時(shí),點(diǎn)Q在BA上運(yùn)動(dòng),由題意,得AP=t,AQ=10-2t,過(guò)點(diǎn)Q作QG⊥AD,垂足為G,則QG∥BE,可得出△AQG∽△ABE,由相似三角形的對(duì)應(yīng)邊成比例即可得出S關(guān)于t的關(guān)系式,再根據(jù)二次函數(shù)的最值問(wèn)題進(jìn)行解答即可;
          (3)先判斷出等腰三角形的兩腰長(zhǎng),過(guò)點(diǎn)Q作QM⊥AP,垂足為點(diǎn)M,QM交AC于點(diǎn)F,根據(jù)△AMF∽△AOD∽△CQF,可得出FM的值,由QF=MQ-FM得出QF的值,進(jìn)而可得出a的值.
          試題解析:(1)5;10
          (2)當(dāng)點(diǎn)Q在BA上運(yùn)動(dòng)時(shí),5≤2t<10,即≤t<5時(shí).
          如圖,過(guò)點(diǎn)B作BE⊥AD,垂足為E,過(guò)點(diǎn)Q作QG⊥AD,垂足為G,則QG∥BE.

          由題意可得BE=, AP= t,AQ=10-2t.
          ∴△AQG∽△ABE, ∴,
          ∴QG=

          (≤t<5) .
          <0,所以s有最大值.

          ∴當(dāng)t=時(shí),S的最大值為6.
          (3) 解:∵a≤,則4a≤5,
          ∴點(diǎn)Q在CB上,
          作QM⊥AD于M,QM交AC于點(diǎn)F,則QM為菱形的高.

          由前面可知,QM==4.8
          而當(dāng)點(diǎn)P運(yùn)行到點(diǎn)M時(shí),QM最小,
          所以PQ≥QM,
          ∵t=4時(shí),PA=4,∴QM>PA.
          ∴PQ≥MQ>PA,類似的AQ>MQ>PA
          ∴QA=QP,△APQ是等腰三角形.
          ∵QM⊥AP
          ∴AM=AP=2.由△AMF∽△AOD
          , 而AM=2,OD=3,OA=4
          ,

          由△AMF∽△CQF,
          ,而QF=,F(xiàn)M=,AM=2.
          ∴CQ=
          而當(dāng)t=4時(shí),CQ=4a
          所以4a= ,解得a=
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(-1,0), 點(diǎn)C(0,5),點(diǎn)D(1,8)在拋物線上,M為拋物線的頂點(diǎn).求

          (1)拋物線的解析式;
          (2)求△MCB的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖1,把邊長(zhǎng)分別是為4和2的兩個(gè)正方形紙片OABC和OD′E′F′疊放在一起.
          (1)操作1:固定正方形OABC,將正方形OD′E′F′繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)45°得到正方形ODEF,如圖2,連接AD、CF,線段AD與CF之間有怎樣的數(shù)量關(guān)系?試證明你的結(jié)論;
          (2)操作2,如圖2,將正方形ODEF沿著射線DB以每秒1個(gè)單位的速度平移,平移后的正方形ODEF設(shè)為正方形PQMN,如圖3,設(shè)正方形PQMN移動(dòng)的時(shí)間為x秒,正方形PQMN與正方形OABC的重疊部分面積為y,直接寫(xiě)出y與x之間的函數(shù)解析式;
          (3)操作3:固定正方形OABC,將正方形OD′E′F′繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°得到正方形OHKL,如圖4,求△ACK的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          某公司開(kāi)發(fā)了一種新型的家電產(chǎn)品,又適逢“家電下鄉(xiāng)”的優(yōu)惠政策.現(xiàn)投資40萬(wàn)元用于該產(chǎn)品的廣告促銷,已知該產(chǎn)品的本地銷售量y1(萬(wàn)臺(tái))與本地的廣告費(fèi)用x(萬(wàn)元)之間的函數(shù)關(guān)系滿足,該產(chǎn)品的外地銷售量y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系可用如圖所示的拋物線和線段AB來(lái)表示,其中點(diǎn)A為拋物線的頂點(diǎn).

          (1)結(jié)合圖象,寫(xiě)出y2(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
          (2)求該產(chǎn)品的銷售總量y(萬(wàn)臺(tái))與外地廣告費(fèi)用t(萬(wàn)元)之間的函數(shù)關(guān)系式;
          (3)如何安排廣告費(fèi)用才能使銷售總量最大?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,已知二次函數(shù)的圖象與軸相交于點(diǎn),頂點(diǎn)為,點(diǎn)在這個(gè)二次函數(shù)圖象的對(duì)稱軸上.若四邊形是一個(gè)邊長(zhǎng)為2且有一個(gè)內(nèi)角為的菱形.求此二次函數(shù)的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          數(shù)形結(jié)合是數(shù)學(xué)中常用的思想方法,試運(yùn)用這一思想方法確定函數(shù)y=x2+1與y=的交點(diǎn)的橫坐標(biāo)x0的取值范圍是( 。
          A.0<x0<1
          B.1<x0<2
          C.2<x0<3
          D.﹣1<x0<0

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          拋物線y=-x2+bx+c的部分圖象如圖所示,若y>0,則x的取值范圍是               

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          一件工藝品進(jìn)價(jià)為100元,標(biāo)價(jià)135元售出,每天可售出100件.根據(jù)銷售統(tǒng)計(jì),一件工藝品每降價(jià)1元出售,則每天可多售出4件,要使每天獲得的利潤(rùn)最大,每件需降價(jià)的錢數(shù)為(  )
          A.5元B.10元
          C.0元D.3 600元

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

          已知二次函數(shù)的圖象如圖,其對(duì)稱軸x=-1,給出下列結(jié)果
          >4ac,②abc>0,③2a+b=0,④a+b+c>0,⑤a-b+c<0,則正確的結(jié)論是(   )
          A.①②③④B.②④⑤C.②③④D.①④⑤

          查看答案和解析>>

          同步練習(xí)冊(cè)答案