日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情
          在平面直角坐標系中,A、B為反比例函數的圖象上兩點,A點的橫坐標與B點的縱坐標均為1,將的圖象繞原點O順時針旋轉90°,A點的對應點為,B點的對應點為

          (1)求旋轉后的圖象解析式;
          (2)求、點的坐標;
          (3)連結.動點點出發(fā)沿線段以每秒1個單位長度的速度向終點運動;動點同時從點出發(fā)沿線段以每秒1個單位長度的速度向終點運動,當其中一個點停止運動時另一個點也隨之停止運動.設運動的時間為秒,試探究:是否存在使為等腰直角三角形的值,若存在,求出的值;若不存在,說明理由.
          (1)旋轉后的圖象解析式為. 
          (2)由旋轉可得(4,-1)、(1,-4). 
          (3)依題意,可知.若為直角三角形,則同時也是等腰三角形,因此,只需求使為直角三角形的值.
          分兩種情況討論:
          ① 當是直角,時,如圖1,

          ∵AB′=8,B′A′==,AM=B′N=MN=t,
          ∴B′M=8-t,


          解得 (舍去負值),
          . 
          ②當是直角,時,
          如圖2,
          ∵AB′=8,B′A′==,AM=B′N=t,
          ∴B′M=MN=8-t,

          ,
          解得 
          ,
          ∴此時t值不存在. 
          (此類情況不計算,通過畫圖說明t值不存在也可以)
          綜上所述,當時,為等腰直角三角形.
          (1)首先把x=1代入反比例函數y=(x>0)的解析式,求出對應的y值,得到A點坐標,然后由旋轉的性質得出∠AOA′=90°,OA=OA′,如果分別過A、A′作AM⊥y軸于M,A′N⊥x軸于N,連接OA,OA′,易證△OAM≌△OA′N,得到A′的坐標,從而求出旋轉后的圖象解析式;
          (2)上問已經求出A′的坐標,同樣求出點B′的坐標;
          (3)首先運用待定系數法求出直線A′B′的解析式,由斜率k的值可知∠A′B′A=45°.然后假設存在使△MNB'為等腰直角三角形的t值,那么分兩種情況討論:①∠B′NM=90°;②∠B′MN=90°.針對每一種情況,都可以利用等腰直角三角形中斜邊是直角邊的倍列出方程,從而求出結果.
          練習冊系列答案
          相關習題

          科目:初中數學 來源:不詳 題型:填空題

          如圖所示,,…,在函數)的圖象上,,,…,都是等腰直角三角形,斜邊,…,都在軸上,則(1)的坐標是 ▲ ,(2) 的坐標是 ▲ ,
          (3) ▲ .

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:解答題

          如圖, 在直角坐標系中,矩形ABCD的邊BC在X軸上,點B、D的坐標分別為B(1,0),D(3,3).

          (1)直接寫出點C的坐標;
          (2)若反比例函數 的圖象經過直線AC上的點E,且點E的坐標為(2,m),求 的值及反比例函數的解析式;
          (3)若(2)中的反比例函數的圖象與CD相交于點F,連接 EF,在線段AB上(端點除外)找一點P,使得:S△PEF=S△CEF,并求出點P的坐標.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:填空題

          如圖,B為雙曲線上一點,直線AB平行于軸交直線于點A,若,則        .

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:單選題

          A(3,2)在反比例函數x>0),則點B的坐標不可能的是( ▲ )
          A.(2,3)B.(,C.(,D.(tan60º,

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:單選題

          已知一個矩形的面積為24cm2,其長為ycm,寬為xcm,則y與x的函數關系的圖象大致是(   )
           
          A.         B.              C.             D.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:單選題

          正比例函數與反比例函數(是非零常數)的圖象交于兩點.若點的坐標為(1,2),則點的坐標是(    ).
          A.B.C.D.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:單選題

          已知點在雙曲線上,則下列各點一定在該雙曲線上的是(   )
          A.B.C.D.

          查看答案和解析>>

          科目:初中數學 來源:不詳 題型:單選題

          矩形的長為x,寬為y,面積為9,則y與x之間的函數關系用圖像表示大致為( )

          查看答案和解析>>

          同步練習冊答案