日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,矩形ABCD中,AB=6,BC=8,點(diǎn)E是BC邊上一點(diǎn),連接AE,把∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,當(dāng)△CEB′為直角三角形時(shí),BE的長(zhǎng)為

          【答案】3或6
          【解析】解:當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
          ①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
          連結(jié)AC,
          在Rt△ABC中,AB=6,BC=8,
          ∴AC= =10,
          ∵∠B沿AE折疊,使點(diǎn)B落在點(diǎn)B′處,
          ∴∠AB′E=∠B=90°,
          當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,
          ∴點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,如圖,
          ∴EB=EB′,AB=AB′=6,
          ∴CB′=10﹣6=4,
          設(shè)BE=x,則EB′=x,CE=8﹣x,
          在Rt△CEB′中,
          ∵EB′2+CB′2=CE2 ,
          ∴x2+42=(8﹣x)2 ,
          解得x=3,
          ∴BE=3;
          ②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.
          此時(shí)ABEB′為正方形,
          ∴BE=AB=6.
          綜上所述,BE的長(zhǎng)為3或6.
          故答案為:3或6.
          當(dāng)△CEB′為直角三角形時(shí),有兩種情況:
          ①當(dāng)點(diǎn)B′落在矩形內(nèi)部時(shí),如答圖1所示.
          連結(jié)AC,先利用勾股定理計(jì)算出AC=10,根據(jù)折疊的性質(zhì)得∠AB′E=∠B=90°,而當(dāng)△CEB′為直角三角形時(shí),只能得到∠EB′C=90°,所以點(diǎn)A、B′、C共線,即∠B沿AE折疊,使點(diǎn)B落在對(duì)角線AC上的點(diǎn)B′處,則EB=EB′,AB=AB′=6,可計(jì)算出CB′=4,設(shè)BE=x,則EB′=x,CE=8﹣x,然后在Rt△CEB′中運(yùn)用勾股定理可計(jì)算出x.
          ②當(dāng)點(diǎn)B′落在AD邊上時(shí),如答圖2所示.此時(shí)四邊形ABEB′為正方形.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在ABC中,∠B=90°,分別作其內(nèi)角∠ACB與外角∠DAC的平分線,且兩條角平分線所在的直線交于點(diǎn)E.

          (1)E=   °;

          (2)分別作∠EAB與∠ECB的平分線,且兩條角平分線交于點(diǎn)F.

          ①依題意在圖1中補(bǔ)全圖形;

          ②求∠AFC的度數(shù);

          (3)在(2)的條件下,射線FM在∠AFC的內(nèi)部且∠AFM=AFC,設(shè)ECAB的交點(diǎn)為H,射線HN在∠AHC的內(nèi)部且∠AHN=AHC,射線HNFM交于點(diǎn)P,若∠FAH,FPH和∠FCH滿足的數(shù)量關(guān)系為∠FCH=mFAH+nFPH,請(qǐng)直接寫出m,n的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示平面內(nèi),有一靠在墻面上的梯子AB(粗細(xì)忽略不計(jì)),因外界因素導(dǎo)致梯子底端A持續(xù)向右滑動(dòng),直至整架梯子完全滑落到地面(即B與O重合),設(shè)A向右滑動(dòng)的距離為x(cm),梯子的中點(diǎn)M與墻角O之間的距離為y(cm),則在整個(gè)滑動(dòng)過程中,y與x的關(guān)系大致可表達(dá)為下列圖象中的(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖①,在ABC中,AE平分∠BACCB,FAE上一點(diǎn),且FDBCD點(diǎn).

          (1)試猜想∠EFD,B,C的關(guān)系,并說明理由;

          (2)如圖②,當(dāng)點(diǎn)FAE的延長(zhǎng)線上時(shí),其余條件不變,(1)中的結(jié)論還成立嗎?說明理由.

                  

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】用一條長(zhǎng)為18cm的細(xì)繩圍成一個(gè)等腰三角形.

          (1)如果腰長(zhǎng)是底邊長(zhǎng)的2倍,求三角形各邊的長(zhǎng);

          (2)能圍成有一邊的長(zhǎng)是4cm的等腰三角形嗎?若能,求出其他兩邊的長(zhǎng);若不能,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如果兩個(gè)一次函數(shù)y=k1x+b1和y=k2x+b2滿足k1=k2 , b1≠b2 , 那么稱這兩個(gè)一次函數(shù)為“平行一次函數(shù)”. 如圖,已知函數(shù)y=﹣2x+4的圖象與x軸、y軸分別交于A、B兩點(diǎn),一次函數(shù)y=kx+b與y=﹣2x+4是“平行一次函數(shù)”

          (1)若函數(shù)y=kx+b的圖象過點(diǎn)(3,1),求b的值;
          (2)若函數(shù)y=kx+b的圖象與兩坐標(biāo)軸圍成的三角形和△AOB構(gòu)成位似圖形,位似中心為原點(diǎn),位似比為1:2,求函數(shù)y=kx+b的表達(dá)式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】水龍頭關(guān)閉不緊會(huì)造成滴水,小明用可以顯示水量的容器做圖①所示的試驗(yàn),并根據(jù)試驗(yàn)數(shù)據(jù)繪制出圖②所示的容器內(nèi)盛水量W(L)與滴水時(shí)間t(h)的函數(shù)關(guān)系圖象,請(qǐng)結(jié)合圖象解答下列問題:

          (1)容器內(nèi)原有水多少?

          (2)求Wt之間的函數(shù)關(guān)系式,并計(jì)算在這種滴水狀態(tài)下一天的滴水量是多少升?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】(本題滿分8分)

          為了加強(qiáng)學(xué)生課外閱讀,開闊視野,某校開展了書香校園,從我做起的主題活動(dòng).學(xué)校隨機(jī)抽取了部分學(xué)生,對(duì)他們一周的課外閱讀時(shí)間進(jìn)行調(diào)查,繪制出頻數(shù)分布表和頻數(shù)分布直方圖的一部分如下:

          請(qǐng)根據(jù)圖表信息回答下列問題:

          (1)頻數(shù)分布表中的 , ;

          (2)將頻數(shù)分布直方圖補(bǔ)充完整;

          (3)學(xué)校將每周課外閱讀時(shí)間在小時(shí)以上的學(xué)生評(píng)為閱讀之星,請(qǐng)你估計(jì)該校名學(xué)生中評(píng)為閱讀之星的有多少人?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】中央電視臺(tái)舉辦的“中國(guó)詩詞大會(huì)”節(jié)目受到中學(xué)生的廣泛關(guān)注.某中學(xué)為了解該校九年級(jí)學(xué)生對(duì)觀看“中國(guó)詩詞大會(huì)”節(jié)目的喜愛程度,對(duì)該校九年級(jí)部分學(xué)生進(jìn)行了隨機(jī)抽樣調(diào)查,并繪制出如圖所示的兩幅統(tǒng)計(jì)圖.在條形圖中,從左向右依次為:A 級(jí)(非常喜歡),B 級(jí)(較喜歡),C 級(jí)(一般),D 級(jí)(不喜歡).請(qǐng)結(jié)合兩幅統(tǒng)計(jì)圖,回答下列問題:
          (1)本次抽樣調(diào)查的樣本容量是 , 表示“D級(jí)(不喜歡)”的扇形的圓心角為°;
          (2)若該校九年級(jí)有200名學(xué)生.請(qǐng)你估計(jì)該年級(jí)觀看“中國(guó)詩詞大會(huì)”節(jié)目B 級(jí)(較喜歡)的學(xué)生人數(shù);
          (3)若從本次調(diào)查中的A級(jí)(非常喜歡)的5名學(xué)生中,選出2名去參加廣州市中學(xué)生詩詞大會(huì)比賽,已知A級(jí)學(xué)生中男生有3名,請(qǐng)用“列表”或“畫樹狀圖”的方法求出所選出的2名學(xué)生中至少有1名女生的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案