日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】(1)問題發(fā)現(xiàn)

          如圖1,ABC和DCE都是等邊三角形,點(diǎn)B、D、E在同一直線上,連接AE.

          填空:

          ①∠AEC的度數(shù)為   ;

          線段AE、BD之間的數(shù)量關(guān)系為   

          (2)拓展探究

          如圖2,ABC和DCE都是等腰直角三角形,∠ACB=∠DCE=90°,點(diǎn)B、D、E在同一直線上,CM為DCE中DE邊上的高,連接AE.試求AEB的度數(shù)及判斷線段CM、AE、BM之間的數(shù)量關(guān)系,并說明理由.

          (3)解決問題

          如圖3,在正方形ABCD中,CD=2,點(diǎn)P在以AC為直徑的半圓上,AP=1,①∠DPC=  °; ②請直接寫出點(diǎn)D到PC的距離為 

          【答案】(1)①120°;②AE=BD;(2)∠AEB=90°,BM=AE+CM,理由見解析;(3)①45;②.

          【解析】

          (1)①根據(jù)等邊三角形的性質(zhì)和全等三角形的判定定理證明△ECA≌△DCB,再利用全等三角形的性質(zhì)與外角的性質(zhì)得出結(jié)論;

          可得AE=BD;

          (2)利用等腰直角三角形的性質(zhì)和全等三角形的判定定理證明△ECA≌△DCB,再利用全等三角形的性質(zhì)與外角的性質(zhì)得出結(jié)論;

          (3)①①四邊形ABCD為正方形,點(diǎn)P在以AC為直徑的半圓上,易得A,P,C,D四點(diǎn)共圓,則∠DPC=∠DAC=45°;

          有勾股定理得到PC=,再利用等腰直角三角形得出DM=PM,進(jìn)而利用勾股定理得出點(diǎn)DPC的距離.

          (1)①∵△ABC△DCE都是等邊三角形,

          ∴CE=CD,CA=CB,∠ECA=60°﹣∠ACD,∠DCB=60°﹣∠ACD,

          △ECA△DCB中,

          ,

          ∴△ECA≌△DCB(SAS),

          ∴∠AEC=∠BDC=∠CED+∠CDE=60°+60°=120°,

          故答案為:120°;

          ②∵△ECA≌△DCB,

          ∴AE=BD,

          故答案為:AE=BD;

          (2)∵△ABC△DCE都是等腰直角三角形,

          ∴∠ECA=90°﹣∠ACD,∠DCB=90°﹣∠ACD,

          ∴∠ECA=∠DCB,

          △ECA△DCB中,

          ,

          ∴△ECA≌△DCB(SAS),

          ∴∠AEC=∠BDC=135°,BD=AE,

          ∴∠AEB=∠AEC﹣∠BEC=135°﹣45°=90°,

          ∵△DCE都是等腰直角三角形,CM△DCEDE邊上的高,

          ∴CM=MD,

          ∵BM=BD+DM,

          ∴BM=AE+CM;

          (3)①四邊形ABCD為正方形,點(diǎn)P在以AC為直徑的半圓上,

          ∴∠APC+∠ADC=90°+90°=180°,

          ∴A,P,C,D四點(diǎn)共圓,

          ∴∠DPC=∠DAC=45°,

          故答案為:45;

          如圖,過點(diǎn)DDM⊥PC,垂足為M,

          在正方形ABCD中,CD=2,點(diǎn)P在以AC為直徑的半圓上,AP=1,

          ∴AC=2,PC===,

          ∵∠DPC=45°,

          ∴DM=PM,

          設(shè)DM=PM=x,則MC=﹣x,

          Rt△DMC中,

          DM2+MC2=DC2

          x2+(﹣x)2=22,

          整理得:2x2﹣2x+3=0,

          解得;x1=,x2=(不符合題意舍去)

          即點(diǎn)DPC的距離為:

          故答案為:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,在長方形中,,有一只螞蟻在點(diǎn) 處開始以每秒1個(gè)單位的速度沿邊向點(diǎn)爬行,另一只螞蟻從點(diǎn)以每秒2個(gè)單位的速度沿邊向點(diǎn)爬行,螞蟻的大小忽略不計(jì),如果、同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為s.

          (1)當(dāng)時(shí),求的面積;

          (2)當(dāng) 時(shí),試說明是直角二角形;

          (3)當(dāng)運(yùn)動(dòng)3s時(shí),點(diǎn)停止運(yùn)動(dòng),點(diǎn)以原速立即向點(diǎn)返回,在返回的過程中,是否存在點(diǎn),使得平分?若存在,求出點(diǎn)運(yùn)動(dòng)的時(shí)間,若不存在請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AB的垂直平分線EF分別交AC、AB邊于E、F點(diǎn).若點(diǎn)OBC邊的中點(diǎn),點(diǎn)M為線段EF上一動(dòng)點(diǎn),則BOM周長的最小值為_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】一個(gè)不透明的袋子中裝有大小、質(zhì)地完全相同的3只球,球上分別標(biāo)有2,3,5三個(gè)數(shù)字.

          (1)從這個(gè)袋子中任意摸一只球,所標(biāo)數(shù)字是奇數(shù)的概率是   ;

          (2)從這個(gè)袋子中任意摸一只球,記下所標(biāo)數(shù)字,不放回,再從這個(gè)袋子中任意摸只球,組成一個(gè)兩位數(shù),求所組成的兩位數(shù)是5的倍數(shù)的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,D為O上一點(diǎn),點(diǎn)C在直徑BA的延長線上,且∠CDA=∠CBD.

          (1)判斷CD與圓O的位置關(guān)系,并說明理由;

          (2)若O的半徑為2,CBD=30°,求圖中陰影部分的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在ABC中,A點(diǎn)坐標(biāo)為(43),B點(diǎn)坐標(biāo)為(-1,4),C點(diǎn)坐標(biāo)為(-3,1).

          1)在圖中畫出ABC關(guān)于x軸對稱的ABC′(不寫畫法),并寫出點(diǎn)AB,C′的坐標(biāo).

          2)在x軸上畫出點(diǎn)P,使PA+PC最。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)yax2bxc的圖象C經(jīng)過(-5,0),,(1,6)三點(diǎn),直線l的解析式為y=2x-3.

          (1)求拋物線C的解析式;

          (2)判斷拋物線C與直線l有無交點(diǎn);

          (3)若與直線l平行的直線y=2xm與拋物線C只有一個(gè)公共點(diǎn)P,求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖1,OA=2,OB=4,以A點(diǎn)為頂點(diǎn)、AB為腰在第三象限作等腰RtABC,

          (1)C點(diǎn)的坐標(biāo);

          (2)如圖2,Py軸負(fù)半軸上一個(gè)動(dòng)點(diǎn),當(dāng)P點(diǎn)向y軸負(fù)半軸向下運(yùn)動(dòng)時(shí),以P為頂點(diǎn),PA為腰作等腰RtAPD,過DDEx軸于E點(diǎn),求OPDE的值;

          (3)如圖3,已知點(diǎn)F坐標(biāo)為(2,2),當(dāng)Gy軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),RtFGH,始終保持∠GFH=90,FGy軸負(fù)半軸交于點(diǎn)G(0,m),FHx軸正半軸交于點(diǎn)H(n,0),當(dāng)G點(diǎn)在y軸的負(fù)半軸上沿負(fù)方向運(yùn)動(dòng)時(shí),以下兩個(gè)結(jié)論:①mn為定值;②m+n為定值,其中只有一個(gè)結(jié)論是正確的,請找出正確的結(jié)論,并求出其值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知點(diǎn)C為線段AB上一點(diǎn),ACMBCN是等邊三角形.

          1)如圖1,求證:ANBM

          2)如圖2,將ACM繞點(diǎn)C按逆時(shí)針方向旋轉(zhuǎn)180°,使點(diǎn)A落在CB上,結(jié)論ANBM是否還成立,若成立,請證明:若不成立,請說明理由;

          3)在(2)所得的圖形中,設(shè)MA的延長線交BND(如圖3),試判斷ABD的形狀,并證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案