日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   
          【答案】分析:根據(jù)題意,點B的坐標為(0,-1),AE=2,根據(jù)EF平分矩形ABCD的面積,先求出點F的坐標,再利用待定系數(shù)法求函數(shù)解形式.
          解答:解:∵AB=2,點A的坐標為(0,1),
          ∴OB=1,∴點B坐標為(0,-1),
          ∵點E(2,1),
          ∴AE=2,ED=AD-AE=1,
          ∵EF平分矩形ABCD的面積,
          ∴BF=DE,
          ∴點F的坐標為(1,-1),
          設直線EF的解析式為y=kx+b,
          ,
          解得
          所以直線EF的解析式為y=2x-3.
          故答案為y=2x-3.
          點評:本題考查矩形的性質和待定系數(shù)法求函數(shù)解形式.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

          (2010•仙桃)如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
          (1)求經(jīng)過B、E、C三點的拋物線的解析式;
          (2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標;若不存在,請說明理由;
          (3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《一次函數(shù)》(03)(解析版) 題型:填空題

          (2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年湖北省江漢油田中考數(shù)學試卷(解析版) 題型:解答題

          (2010•仙桃)如圖,平面直角坐標系中,點A、B、C在x軸上,點D、E在y軸上,OA=OD=2,OC=OE=4,DB⊥DC,直線AD與經(jīng)過B、E、C三點的拋物線交于F、G兩點,與其對稱軸交于M.點P為線段FG上一個動點(與F、G不重合),PQ∥y軸與拋物線交于點Q.
          (1)求經(jīng)過B、E、C三點的拋物線的解析式;
          (2)是否存在點P,使得以P、Q、M為頂點的三角形與△AOD相似?若存在,求出滿足條件的點P的坐標;若不存在,請說明理由;
          (3)若拋物線的頂點為N,連接QN,探究四邊形PMNQ的形狀:①能否成為菱形;②能否成為等腰梯形?若能,請直接寫出點P的坐標;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2010年湖北省江漢油田中考數(shù)學試卷(解析版) 題型:填空題

          (2010•仙桃)如圖,已知矩形ABCD,AB在y軸上,AB=2,BC=3,點A的坐標為(0,1),在AD邊上有一點E(2,1),過點E的直線與BC交于點F.若EF平分矩形ABCD的面積,則直線EF的解析式為   

          查看答案和解析>>

          同步練習冊答案