A
分析:根據(jù)切線的性質(zhì)和切線長定理得到PA=PB,∠APE=∠BPE,∠PAO=90°,根據(jù)等腰三角形的性質(zhì)有AE⊥AB,∠PAB=∠PBA,再根據(jù)等角的余角相等得到∠PAB=∠AOP,所以
∠ABP=∠AOP;由OC⊥AB,根據(jù)垂徑定理得弧AC=弧BC,而∠AOC=∠DOF,得到弧AC=弧DF,所以弧BC=弧DF;易證得Rt△PAE∽Rt△POA,則PA:PO=PE:AP,即PA2=PE•PO,
根據(jù)切割線定理有PA2=PC•PD,所以PC•PD=PE•PO.
解答:∵PA、PB是⊙O的兩條切線,
∴PA=PB,∠APE=∠BPE,∠PAO=90°,
∴AE⊥AB,∠PAB=∠PBA,
∴∠EAO+∠AOP=90°,而∠PAE+∠EAO=90°,
∴∠PAB=∠AOP,
∴∠ABP=∠AOP,所以①正確;
∵OC⊥AB,
∴弧AC=弧BC,
∵∠AOC=∠DOF,
∴弧AC=弧DF,
∴弧BC=弧DF,所以②正確;
∵∠APE=∠OPA,
∴Rt△PAE∽Rt△POA,
∴PA:PO=PE:AP,即PA2=PE•PO,
∵PA2=PC•PD,
∴PC•PD=PE•PO,所以③正確.
故選A.
點評:本題考查了切線的性質(zhì):圓的切線垂直于過切點的半徑.也考查了垂徑定理、三角形相似的判定與性質(zhì)以及切割線定理.