日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 平面直角坐標(biāo)系中,A(4,8)、C(0,6),過A點(diǎn)作AB⊥x軸于B,過OB上的動點(diǎn)D作DE∥AC交AB于E,連CD,過E點(diǎn)作EF∥CD交AC于點(diǎn)F.
          (1)求經(jīng)過點(diǎn)A,C兩點(diǎn)的直線解析式;
          (2)當(dāng)點(diǎn)D在OB上移動時(shí),能否使四邊形CDEF成為矩形?若能,求出此時(shí)直線DE的解析式;若不能,說明理由.
          分析:(1)由已知A、C兩點(diǎn)坐標(biāo),用待定系數(shù)求出解析式;
          (2)先由DE∥AC,直線AC的解析式為:y=
          1
          2
          x+6,根據(jù)兩直線平行的性質(zhì)可知直線DE的斜率與直線AC的斜率相等,即k=
          1
          2
          ,故可設(shè)直線DE的解析式為:y=
          1
          2
          x+n,用含n的代數(shù)式表示出M、D兩點(diǎn)的坐標(biāo).再假設(shè)四邊形CDEF為矩形,易證△COD∽△DOM,根據(jù)相似三角形的對應(yīng)邊成比例,列出關(guān)系式,如果能夠求出符合題意的n值,說明當(dāng)點(diǎn)D在OB上移動時(shí),能使四邊形CDEF為矩形;否則就不能.
          解答:解:(1)設(shè)直線AC的解析式為y=kx+b,
          ∵A(4,8),C(0,6),
          4k+b=8
          b=6

          解得
          k=
          1
          2
          b=6
          ,
          ∴直線AC的解析式為:y=
          1
          2
          x+6;

          (2)∵DE∥AC,直線AC的解析式為:y=
          1
          2
          x+6,
          ∴可設(shè)直線DE的解析式為:y=
          1
          2
          x+n.
          設(shè)直線DE與y軸交于點(diǎn)M,則M(0,n),D(-2n,0).
          如果四邊形CDEF為矩形,則DE⊥CD,
          ∴∠OCD=∠ODM=90°-∠ODC,
          又∵∠COD=∠DOM,
          ∴△COD∽△DOM,
          ∴OC:OD=OD:OM,
          ∴OD2=OC•OM,
          ∴(-2n)2=6|n|,
          ∵n<0,解得n=-
          3
          2

          即直線DE的解析式為:y=
          1
          2
          x-
          3
          2
          ,
          故能使四邊形CDEF為矩形,此時(shí)y=
          1
          2
          x-
          3
          2
          點(diǎn)評:此題考查運(yùn)用待定系數(shù)求一次函數(shù)的解析式,相似三角形的判定與性質(zhì),矩形的性質(zhì),綜合性較強(qiáng),難度中等.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,平面直角坐標(biāo)系中有一直角梯形OMNH,點(diǎn)H的坐標(biāo)為(-8,0),點(diǎn)N的坐標(biāo)為(-6,-4).
          (1)畫出直角梯形OMNH繞點(diǎn)O旋轉(zhuǎn)180°的圖形OABC,并寫出頂點(diǎn)A,B,C的坐標(biāo)(點(diǎn)M的對應(yīng)點(diǎn)為A,點(diǎn)N的對應(yīng)點(diǎn)為B,點(diǎn)H的對應(yīng)點(diǎn)為C);
          (2)求出過A,B,C三點(diǎn)的拋物線的表達(dá)式;
          (3)試設(shè)計(jì)一種平移使(2)中的拋物線經(jīng)過四邊形ABCO的對角線交點(diǎn);
          (4)截取CE=OF=AG=m,且E,F(xiàn),G分別在線段CO,OA,AB上,四邊精英家教網(wǎng)形BEFG是否存在鄰邊相等的情況?若存在,請直接寫出此時(shí)m的值,并指出相等的鄰邊;若不存在,說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,在平面直角坐標(biāo)系中,以O(shè)(0,0),A(1,1),B(3,0)為頂點(diǎn),構(gòu)造平行四邊形,則第四個頂點(diǎn)的坐標(biāo)可以是
           

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          8、在平面直角坐標(biāo)系中,對于平面內(nèi)任一點(diǎn)(a,b),若規(guī)定以下三種變換:
          1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
          2、g(a,b)=(b,a).如:g(1,3)=(3,1);
          3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
          按照以上變換有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于( 。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          12、在平面直角坐標(biāo)系中,將直線y=-2x+1向下平移4個單位長度后.所得直線的解析式為
          y=-2x-3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          13、下列說法中,正確的有( 。
          ①無限小數(shù)不一定是無理數(shù)
          ②矩形具有的性質(zhì)平行四邊形一定具有.
          ③平面直角坐標(biāo)系中的點(diǎn)與有序?qū)崝?shù)對是一一對應(yīng)的.
          ④一個數(shù)平方根與這個數(shù)的立方根相同的數(shù)是0和1.

          查看答案和解析>>

          同步練習(xí)冊答案