日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
          (1)求此拋物線的解析式;
          (2)設(shè)E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時,求E點的坐標(biāo);
          (3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當(dāng)P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標(biāo).

          【答案】分析:(1)將A、B的坐標(biāo)代入拋物線的解析式中,即可求出待定系數(shù)的值;
          (2)根據(jù)拋物線的解析式可得出C點的坐標(biāo),易證得△ABC是直角三角形,則EF⊥BC;△CEF和△BEF同高,則面積比等于底邊比,由此可得出CF=2BF;易證得△BEF∽△BAC,根據(jù)相似三角形的性質(zhì),即可求得BE、AB的比例關(guān)系,由此可求出E點坐標(biāo);
          (3)PQ的長實際是直線AC與拋物線的函數(shù)值的差,可設(shè)P點橫坐標(biāo)為m,用m表示出P、Q的縱坐標(biāo),然后可得出PQ的長與m的函數(shù)關(guān)系式,根據(jù)所得函數(shù)的性質(zhì)即可求出PQ最大時,m的值,也就能求出此時P點的坐標(biāo).
          解答:解:(1)由題意,得:,
          解得
          ∴y=x2+x-2;

          (2)由(1)知:C(0,-2);
          則AC2=AO2+OC2=20,BC2=BO2+OC2=5;
          而AB2=25=AC2+BC2;
          ∴△ACB是直角三角形,且∠ACB=90°;
          ∵EF∥AC,
          ∴EF⊥BC;
          ∵S△CEF=2S△BEF,
          ∴CF=2BF,BC=3BF;
          ∵EF∥AC,
          ;
          ∵AB=5,
          ∴BE=;
          OE=BE-OB=,故E(,0);

          (3)設(shè)P點坐標(biāo)為(m,m2+m-2);
          已知A(-4,0),C(0,-2),
          設(shè)直線AC的解析式為:
          y=kx-2,
          則有:-4k-2=0,k=-;
          ∴直線AC的解析式為y=-x-2;
          ∴Q點坐標(biāo)為(m,-m-2);
          則PQ=-m-2-(m2+m-2)=-m2-2m;
          ∴當(dāng)m=-2,即P(-2,-3)時,PQ最大,且最大值為2.
          故當(dāng)P運動到OA垂直平分線上時,PQ的值最大,此時P(-2,-3).
          點評:此題考查了二次函數(shù)解析式的確定、直角三角形的判定和性質(zhì)、三角形面積的求法、相似三角形的判定和性質(zhì)、二次函數(shù)的應(yīng)用等知識,綜合性強,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

          (2010•常德)如圖,已知拋物線y=x2+bx+c與x軸交于點A(-4,0)和B(1,0)兩點,與y軸交于C點.
          (1)求此拋物線的解析式;
          (2)設(shè)E是線段AB上的動點,作EF∥AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時,求E點的坐標(biāo);
          (3)若P為拋物線上A、C兩點間的一個動點,過P作y軸的平行線,交AC于Q,當(dāng)P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圖形的相似》(07)(解析版) 題型:解答題

          (2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
          (1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖2的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由;
          (2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖3的位置時,延長CE交AG于H,交AD于M.
          ①求證:AG⊥CH;
          ②當(dāng)AD=4,DG=時,求CH的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

          (2010•常德)如圖AB是⊙O的直徑,∠A=30°,延長OB到D使BD=OB.
          (1)△OBC是否是等邊三角形?說明理由;
          (2)求證:DC是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:2010年全國中考數(shù)學(xué)試題匯編《四邊形》(13)(解析版) 題型:解答題

          (2010•常德)如圖1,若四邊形ABCD、四邊形GFED都是正方形,顯然圖中有AG=CE,AG⊥CE;
          (1)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖2的位置時,AG=CE是否成立?若成立,請給出證明;若不成立,請說明理由;
          (2)當(dāng)正方形GFED繞D旋轉(zhuǎn)到如圖3的位置時,延長CE交AG于H,交AD于M.
          ①求證:AG⊥CH;
          ②當(dāng)AD=4,DG=時,求CH的長.

          查看答案和解析>>

          同步練習(xí)冊答案