【題目】一座拱橋的輪廓是拋物線型(如圖1所示),拱高6m,跨度20m,相鄰兩支柱間的距離均為5m.
(1)將拋物線放在所給的直角坐標(biāo)系中(如圖2所示),其表達(dá)式是y=ax2+c的形式.請(qǐng)根據(jù)所給的數(shù)據(jù)求出a,c的值.
(2)求支柱MN的長(zhǎng)度.
(3)拱橋下地平面是雙向行車道(正中間是一條寬2m的隔離帶),其中的一條行車道能否并排行駛寬2m、高3m的三輛汽車(汽車間的間隔忽略不計(jì))?請(qǐng)說(shuō)說(shuō)你的理由.
【答案】(1)y=-x2+6;(2)5.5米;(3)一條行車道能并排行駛這樣的三輛汽車.
【解析】試題分析: 根據(jù)題目可知
的坐標(biāo),設(shè)出拋物線的解析式代入可求解.
設(shè)
點(diǎn)的坐標(biāo)為
可求出支柱
的長(zhǎng)度.
設(shè)
是隔離帶的寬,
是三輛車的寬度和.作
垂直
交拋物線于
,則可求解.
試題解析: 根據(jù)題目條件,
的坐標(biāo)分別是
將的坐標(biāo)代入
得
解得
所以拋物線的表達(dá)式是
可設(shè)
,于是
從而支柱的長(zhǎng)度是
米.
設(shè)
是隔離帶的寬,
是三輛車的寬度和,則
點(diǎn)坐標(biāo)是
過(guò)點(diǎn)作
垂直
交拋物線于
,則
根據(jù)拋物線的特點(diǎn),可知一條行車道能并排行駛這樣的三輛汽車.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,
,
,點(diǎn)
是直線
上的一點(diǎn),連接
,將線段
繞點(diǎn)
逆時(shí)針旋轉(zhuǎn)
,得到線段
,連接
.
(1)操作發(fā)現(xiàn)
如圖1,當(dāng)點(diǎn)在線段
上時(shí),請(qǐng)你直接寫出
與
的位置關(guān)系為______;線段
、
、
的數(shù)量關(guān)系為______;
(2)猜想論證
當(dāng)點(diǎn)在直線
上運(yùn)動(dòng)時(shí),如圖2,是點(diǎn)
在射線
上,如圖3,是點(diǎn)
在射線
上,請(qǐng)你寫出這兩種情況下,線段
、
、
的數(shù)量關(guān)系,并對(duì)圖2的結(jié)論進(jìn)行證明;
(3)拓展延伸
若,
,請(qǐng)你直接寫出
的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某天,小王去朋友家借書,在朋友家停留一段時(shí)間后,返回家中,如圖是他離家的路程(千米)與時(shí)間(分)的關(guān)系的圖象,根據(jù)圖象信息,下列說(shuō)法正確的是( )
A. 小王去時(shí)的速度大于回家的速度B. 小王在朋友家停留了10分鐘
C. 小王去時(shí)所花時(shí)間少于回家所花時(shí)間D. 小王去時(shí)走上坡路施,回家時(shí)走下坡路
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB=AC,AE=AF,BE與CF交于點(diǎn)D,則對(duì)于下列結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③D在∠BAC的平分線上.其中正確的是( 。
A. ① B. ② C. ①和② D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,
為線段
上一點(diǎn),
為線段
上一點(diǎn),
,設(shè)
,
.
①如果,那么
_______,
_________;
②求之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等邊△ABC中,過(guò)A,B,C三點(diǎn)在三角形內(nèi)分別作∠1=∠2=∠3,三個(gè)角的邊相交于D,E,F,
(1)你認(rèn)為△DEF是什么三角形?并證明你的結(jié)論;
(2)當(dāng)∠1,∠2,∠3三個(gè)角同時(shí)逐漸增大仍保持相等時(shí),△DEF會(huì)發(fā)生什么變化?試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,AD⊥BC于點(diǎn)D,BE⊥AC于點(diǎn)E,AD與BE交于點(diǎn)F,BH⊥AB于點(diǎn)B,點(diǎn)M是BC的中點(diǎn),連接FM并延長(zhǎng)交BH于點(diǎn)H.
(1)在圖①中,∠ABC=60°,AF=3時(shí),FC= ,BH= ;
(2)在圖②中,∠ABC=45°,AF=2時(shí),FC= ,BH= ;
(3)從第(1)、(2)中你發(fā)現(xiàn)了什么規(guī)律?在圖③中,∠ABC=30°,AF=1時(shí),試猜想BH等于多少?并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中AB=AC,△AED中AE=AD,∠EAD=∠BAC,AC與BD交于點(diǎn)O.
(1)試確定∠ADC與∠AEB間的數(shù)量關(guān)系,并說(shuō)明理由;
(2)若∠ACB=65°,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀理解,補(bǔ)全證明過(guò)程及推理依據(jù).
已知:如圖,點(diǎn)E在直線DF上,點(diǎn)B在直線AC上,∠1=∠2,∠3=∠4.
求證∠A=∠F
證明:∵∠1=∠2(已知)
∠2=∠DGF( )
∴∠1=∠DGF(等量代換)
∴ ∥ ( )
∴∠3+∠ =180°( )
又∵∠3=∠4(已知)
∴∠4+∠C=180°(等量代換)
∴ ∥ ( )
∴∠A=∠F( )
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com