日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 問題情境

              如圖,在軸上有兩點,).分別過點,點軸的垂線,交拋物線于點、點.直線交直線于點,直線交直線于點,點、點的縱坐標分別記為、.

          特例探究

          填空:

          ,時,=____,=______.當,時,=____,=______.

          歸納證明

          對任意,),猜想的大小關(guān)系,并證明你的猜想

          拓展應用.

          (1)    若將“拋物線”改為“拋物線”,其它條件不變,請直接寫出的大小關(guān)系.

          (2)    連接,.當時,直接寫出的關(guān)系及四邊形的形狀.

          [

          答案] 特例探究;.歸納證明 猜想.證明(略)拓展應用(1).(2)四邊形是平行四邊形.

          [考點] 一次函數(shù)、二次函數(shù)綜合運用,函數(shù)圖象上的點與函數(shù)解析式的關(guān)系,平行四邊形的判定.

          [解析] 特例探究

              當,時,,,所以直線的解析式為:;直線的解析式為:;此時

          ,得.解,得.

          所以,此時

              當,時,,,所以直線的解析式為:;直線的解析式為:;此時

          ,得.解,得.

               所以,此時

          歸納證明 猜想:對任意,),都有:.

                 證明:對任意,)時,,,所以直線的解析式為:;直的解析式為:;此時

          ,得.解,得.

           所以,此時.

          拓展應用

          (1)若將“拋物線”改為“拋物線”,其它條件不變,仍然有:.

               此時,,所以直線的解析式為:;直線的解析式為:;此時

          ,得.解,得.

          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          (2013•天津)如圖,是一對變量滿足的函數(shù)關(guān)系的圖象,有下列3個不同的問題情境:
          ①小明騎車以400米/分的速度勻速騎了5分,在原地休息了4分,然后以500米/分的速度勻速騎回出發(fā)地,設(shè)時間為x分,離出發(fā)地的距離為y千米;
          ②有一個容積為6升的開口空桶,小亮以1.2升/分的速度勻速向這個空桶注水,注5分后停止,等4分后,再以2升/分的速度勻速倒空桶中的水,設(shè)時間為x分,桶內(nèi)的水量為y升;
          ③矩形ABCD中,AB=4,BC=3,動點P從點A出發(fā),依次沿對角線AC、邊CD、邊DA運動至點A停止,設(shè)點P的運動路程為x,當點P與點A不重合時,y=S△ABP;當點P與點A重合時,y=0.
          其中,符合圖中所示函數(shù)關(guān)系的問題情境的個數(shù)為( 。

          查看答案和解析>>

          科目:初中數(shù)學 來源:2012-2013學年湖北省鄂州市第三中學八年級下學期期中考試數(shù)學試卷(帶解析) 題型:解答題

          [問題情境] 勾股定理是一條古老的數(shù)學定理,它有很多證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖利用面積法進行證明,著名數(shù)學家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進行第一次“談話”的語言。
          [定理表述] 請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述);
                                                  
           
          [嘗試證明] 以圖(1)中的直角三角形為基礎(chǔ)可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請你利用圖(2)驗證勾股定理;
          [知識拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:
          ∵BC=a+b,AD=         .
          又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       。

          查看答案和解析>>

          科目:初中數(shù)學 來源:2014屆湖北省鄂州市八年級下學期期中考試數(shù)學試卷(解析版) 題型:解答題

          [問題情境] 勾股定理是一條古老的數(shù)學定理,它有很多證明方法,我國漢代數(shù)學家趙爽根據(jù)弦圖利用面積法進行證明,著名數(shù)學家華羅庚曾提出把“數(shù)形關(guān)系”帶到其他星球作為地球人與其他星球“人”進行第一次“談話”的語言。

          [定理表述] 請你根據(jù)圖(1)中的直角三角形敘述勾股定理(用文字及符號語言敘述);

                                                  

           

          [嘗試證明] 以圖(1)中的直角三角形為基礎(chǔ)可以構(gòu)造出以a、b為底,以a+b為高的直角梯形如圖(2)。請你利用圖(2)驗證勾股定理;

          [知識拓展] 利用圖(2)的直角梯形,我們可以證明,其證明步驟如下:

          ∵BC=a+b,AD=         .

          又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       。

           

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          情境觀察

          將矩形ABCD紙片沿對角線AC剪開,得到△ABC和△A′C′D,如圖1所示.將△A′C′D的頂點A′與點A重合,并繞點A按逆時針方向旋轉(zhuǎn),使點D、A(A′)、B在同一條直線上,如圖2所示.

          觀察圖2可知:與BC相等的線段是    ,∠CAC′=    °.

          問題探究

          如圖3,△ABC中,AGBC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰RtABE和等腰RtACF,過點E、F作射線GA的垂線,垂足分別為PQ. 試探究EPFQ之間的數(shù)量關(guān)系,并證明你的結(jié)論.


          拓展延伸

          如圖4,△ABC中,AGBC于點G,分別以ABAC為一邊向△ABC外作矩形ABME和矩形ACNF,射線GAEF于點H. 若AB= k AEAC= k AF,試探究HEHF之間的數(shù)量關(guān)系,并說明理由.

          查看答案和解析>>

          同步練習冊答案