日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】我們知道,如果一個(gè)矩形的寬與長(zhǎng)之比為,那么這個(gè)矩形就稱(chēng)為黃金矩形.如圖,已知AB兩點(diǎn)都在反比例函數(shù)yk0)位于第一象限內(nèi)的圖像上,過(guò)AB兩點(diǎn)分別作坐標(biāo)軸的垂線,垂足分別為C、DE、F,設(shè)ACBF交于點(diǎn)G,已知四邊形OCADCEBG都是正方形設(shè)FG、OC的中點(diǎn)分別為P、Q,連接PQ.給出以下結(jié)論:①四邊形ADFG為黃金矩形;②四邊形OCGF為黃金矩形;③四邊形OQPF為黃金矩形.以上結(jié)論中,正確的是(

          A. B. C. ②③D. ①②③

          【答案】B

          【解析】

          設(shè)A(),B(),,再根據(jù)黃金矩形的定義解答即可.

          設(shè)A(),B(),,∵四邊形OCAD為正方形,∴=代入==,∴A( ,),∵CEBG為正方形,∴,即-=,代入 ,∴B(,),G點(diǎn)坐標(biāo)(,), Q點(diǎn)的坐標(biāo)(,0),平行四邊形/span>ADFG中,,在四邊形OCGF中, ,四邊形OQPF中, ,故選B.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,BC是⊙O的直徑,弦AFBC于點(diǎn)E,延長(zhǎng)BC到點(diǎn)D,連接OA,AD,使得∠FAC=AOD,∠D=BAF

          (1)求證:AD是⊙O的切線;

          (2)若⊙O的半徑為5,CE=2,求EF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知:如圖,拋物線x軸于A(-2,0),B3,0)兩點(diǎn),交y軸于點(diǎn)C0,6).

          1)寫(xiě)出ab,c的值;

          2)連接BC,點(diǎn)P為第一象限拋物線上一點(diǎn),過(guò)點(diǎn)AADx軸,過(guò)點(diǎn)PPDBC于交直線AD于點(diǎn)D,設(shè)點(diǎn)P的橫坐標(biāo)為t,AD長(zhǎng)為h

          ①求ht的函數(shù)關(guān)系式和h的最大值(請(qǐng)求出自變量t的取值范圍);

          ②過(guò)第二象限點(diǎn)DDEABBC于點(diǎn)E,若DP=CE,時(shí),求點(diǎn)P的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過(guò)點(diǎn)OOEAB,交BCE.

          (1)求證:ED為⊙O的切線;

          (2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

          【答案】(1)證明見(jiàn)解析;(2)

          【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
          (2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

          試題解析:(1)證明:連接OD

          OEAB,

          ∴∠COE=CADEOD=ODA,

          OA=OD,

          ∴∠OAD=ODA,

          ∴∠COE=DOE,

          在△COE和△DOE中,

          ∴△COE≌△DOE(SAS),

          EDOD,

          ED的切線;

          (2)連接CD,交OEM,

          RtODE中,

          OD=32,DE=2,

          OEAB

          ∴△COE∽△CAB,

          AB=5,

          AC是直徑,

          EFAB,

          SADF=S梯形ABEFS梯形DBEF

          ∴△ADF的面積為

          型】解答
          結(jié)束】
          25

          【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

          (1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

          (2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

          (3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知矩形ABCD的頂點(diǎn)A、D分別落在x軸、y軸,OD=2OA=6,ADAB=31.則點(diǎn)B的坐標(biāo)是_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某區(qū)招聘新教師即將進(jìn)入面試環(huán)節(jié),除了從外區(qū)抽調(diào)部分評(píng)委之外,還打算從本區(qū)教學(xué)專(zhuān)家?guī)熘忻块T(mén)學(xué)科再隨機(jī)抽取2人,共同組成評(píng)委團(tuán)隊(duì)擔(dān)任面試工作.已知該區(qū)初中數(shù)學(xué)學(xué)科專(zhuān)家?guī)熘泄灿?/span>6名候選人:楊老師(女)、王老師(男),陳老師(女)、周老師(男)、王老師(女)、李老師(女).由于李老師(女)有直系親屬參加面試需回避,所以本區(qū)的2名初中數(shù)學(xué)學(xué)科評(píng)委只能在其余5人中隨機(jī)產(chǎn)生.請(qǐng)用畫(huà)樹(shù)狀圖法或列表法等方式求出所抽取的2名評(píng)委恰好是都是女教師的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)設(shè)以下體育課外活動(dòng)項(xiàng)目:A籃球 B乒乓球C羽毛球 D足球,為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:

          (1)這次被調(diào)查的學(xué)生共有   人;

          (2)請(qǐng)你將條形統(tǒng)計(jì)圖(2)補(bǔ)充完整;

          (3)在平時(shí)的乒乓球項(xiàng)目訓(xùn)練中,甲、乙、丙、丁四人表現(xiàn)優(yōu)秀,現(xiàn)決定從這四名同學(xué)中任選兩名參加乒乓球比賽,求恰好選中甲、乙兩位同學(xué)的概率(用樹(shù)狀圖或列表法解答)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在△ABC中,ACBC2,∠C90°,D是的中點(diǎn),DEDF,點(diǎn)E,F分別在AC,BC上,則四邊形CFDE的面積為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,P,Q是方格紙中的兩格點(diǎn),請(qǐng)按要求畫(huà)出以PQ為對(duì)角線的格點(diǎn)四邊形.

          (1)在圖1中畫(huà)出一個(gè)面積最小的¨PAQB;

          (2)在圖2中畫(huà)出一個(gè)四邊形PCQD,使其是軸對(duì)稱(chēng)圖形而不是中心對(duì)稱(chēng)圖形,且另一條對(duì)角線CD由線段PQ以某一格點(diǎn)為旋轉(zhuǎn)中心旋轉(zhuǎn)得到.注:圖1,圖2在答題紙上.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案