日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知如圖,矩形OABC的長OA=,寬OC=1,將△AOC沿AC翻折得△APC

          1)求∠PCB的度數(shù);

          2)若P,A兩點(diǎn)在拋物線y=﹣x2+bx+c上,求b,c的值,并說明點(diǎn)C在此拋物線上;

          3)(2)中的拋物線與矩形OABCCB相交于點(diǎn)D,與x軸相交于另外一點(diǎn)E,若點(diǎn)Mx軸上的點(diǎn),Ny軸上的點(diǎn),以點(diǎn)EM、DN為頂點(diǎn)的四邊形是平行四邊形,試求點(diǎn)M、N的坐標(biāo).

          【答案】

          1 ∠PCB=30°

          2 點(diǎn)C0,1)滿足上述函數(shù)關(guān)系式,所以點(diǎn)C在拋物線上.

          3 、若DE是平行四邊形的對角線,點(diǎn)Cy軸上,CD平行x軸,

          過點(diǎn)DDM∥ CEx軸于M,則四邊形EMDC為平行四邊形,

          y=1代入拋物線解析式得點(diǎn)D的坐標(biāo)為(,1

          y=0代入拋物線解析式得點(diǎn)E的坐標(biāo)為(0

          ∴M(,0);N點(diǎn)即為C點(diǎn),坐標(biāo)是(0,1); ……9

          、若DE是平行四邊形的邊,

          DE=2,∠DEF=30°,

          過點(diǎn)AAN∥DEy軸于N,四邊形DANE是平行四邊形,

          ∴M(,0),N(0,-1); ……11

          同理過點(diǎn)CCM∥DEy軸于N,四邊形CMDE是平行四邊形,

          ∴M(,0),N(0, 1). ……12

          【解析】

          1)根據(jù)OC、OA的長,可求得∠OCA=∠ACP=60°(折疊的性質(zhì)),∠BCA=∠OAC=30°,由此可判斷出∠PCB的度數(shù).

          2)過PPQ⊥OAQ,在Rt△PAQ中,易知PA=OA=3,而∠PAO=2∠PAC=60°,即可求出AQ、PQ的長,進(jìn)而可得到點(diǎn)P的坐標(biāo),將PA坐標(biāo)代入拋物線的解析式中,即可得到b、c的值,從而確定拋物線的解析式,然后將C點(diǎn)坐標(biāo)代入拋物線的解析式中進(jìn)行驗證即可.

          3)根據(jù)拋物線的解析式易求得CD、E點(diǎn)的坐標(biāo),然后分兩種情況考慮:

          ①DE是平行四邊形的對角線,由于CD∥x軸,且Cy軸上,若過D作直線CE的平行線,那么此直線與x軸的交點(diǎn)即為M點(diǎn),而N點(diǎn)即為C點(diǎn),D、E的坐標(biāo)已經(jīng)求得,結(jié)合平行四邊形的性質(zhì)即可得到點(diǎn)M的坐標(biāo),而C點(diǎn)坐標(biāo)已知,即可得到N點(diǎn)的坐標(biāo);

          ②DE是平行四邊形的邊,由于Ax軸上,過ADE的平行線,與y軸的交點(diǎn)即為N點(diǎn),而M點(diǎn)即為A點(diǎn);易求得∠DEA的度數(shù),即可得到∠NAO的度數(shù),已知OA的長,通過解直角三角形可求得ON的值,從而確定N點(diǎn)的坐標(biāo),而M點(diǎn)與A點(diǎn)重合,其坐標(biāo)已知;

          同理,由于Cy軸上,且CD∥x軸,過CDE的平行線,也可找到符合條件的M、N點(diǎn),解法同上.

          解:(1)在Rt△OAC中,OA=,OC=1,則∠OAC=30°,∠OCA=60°;

          根據(jù)折疊的性質(zhì)知:OA=AP=,∠ACO=∠ACP=60°;

          ∵∠BCA=∠OAC=30°,且∠ACP=60°,

          ∴∠PCB=30°

          2)過PPQ⊥OAQ

          Rt△PAQ中,∠PAQ=60°,AP=;

          ∴OQ=AQ=,PQ=,

          所以P);

          P、A代入拋物線的解析式中,得:

          ,

          解得;

          y=-x2+x+1

          當(dāng)x=0時,y=1,故C0,1)在拋物線的圖象上.

          3DE是平行四邊形的對角線,點(diǎn)Cy軸上,CD平行x軸,

          過點(diǎn)DDM∥CEx軸于M,則四邊形EMDC為平行四邊形,

          y=1代入拋物線解析式得點(diǎn)D的坐標(biāo)為(,1

          y=0代入拋物線解析式得點(diǎn)E的坐標(biāo)為(-,0

          ∴M,0);N點(diǎn)即為C點(diǎn),坐標(biāo)是(0,1);

          DE是平行四邊形的邊,

          過點(diǎn)AAN∥DEy軸于N,四邊形DANE是平行四邊形,

          ∴DE=AN===2

          ∵tan∠EAN==,

          ∴∠EAN=30°,

          ∵∠DEA=∠EAN

          ∴∠DEA=30°,

          ∴M(,0),N0-1);

          同理過點(diǎn)CCM∥DEy軸于N,四邊形CMDE是平行四邊形,

          ∴M-0),N0,1).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知一元二次方程ax2+bx+c=0兩根為x1,x2,x2+x1=﹣,x2.x1=.如果拋物線y=ax2+bx+c經(jīng)過點(diǎn)(1,2),若abc=4,且a≥b≥c,則|a|+|b|+|c|的最小值為( 。

          A. 5 B. 6 C. 7 D. 8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,拋物線y=ax2+bx+2x軸相交于A(﹣1,0),B(4,0)兩點(diǎn),與y軸相交于點(diǎn)C.

          (1)求拋物線的解析式;

          (2)將△ABCAB中點(diǎn)M旋轉(zhuǎn)180°,得到△BAD.

          ①求點(diǎn)D的坐標(biāo);

          ②判斷四邊形ADBC的形狀,并說明理由;

          (3)在該拋物線對稱軸上是否存在點(diǎn)P,使△BMP與△BAD相似?若存在,請求出所有滿足條件的P點(diǎn)的坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,一段拋物線:y=﹣x(x﹣5)(0≤x≤5),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,得到一“波浪線”,若點(diǎn)P(2018,m)在此“波浪線”上,則m的值為( )

          A. 4 B. ﹣4 C. ﹣6 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點(diǎn)A(﹣3,0),對稱軸為直線x=﹣1,給出以下結(jié)論:abc0 b24ac0 4b+c0 若B(﹣,y1)、C,y2)為函數(shù)圖象上的兩點(diǎn),則y1y2當(dāng)﹣3≤x≤1時,y≥0,

          其中正確的結(jié)論是(填寫代表正確結(jié)論的序號)__________________

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在平面直角坐標(biāo)系中,點(diǎn)P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個交點(diǎn)是C,一次函數(shù)y=﹣x+m(m為實數(shù))的圖象為直線l,l分別交x軸,y軸于A,B兩點(diǎn),如圖1.

          (1)B點(diǎn)坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °;

          (2)若點(diǎn)N是直線AB與半圓CO的一個公共點(diǎn)(兩個公共點(diǎn)時,N為右側(cè)一點(diǎn)),過點(diǎn)N作⊙P的切線交x軸于點(diǎn)E,如圖2.

          ①是否存在這樣的m的值,使得△EBN是直角三角形?若存在,求出m的值;若不存在,請說明理由.

          ②當(dāng)時,求m的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】小清為班級辦黑板報時遇到一個難題,在版面設(shè)計過程中需要將一個半圓三等分,小華幫他設(shè)計了一個尺規(guī)作圖的方法.

          小華的作法如下:

          (1)作AB的垂直平分線CDAB于點(diǎn)O;

          (2)分別,以A、B為圓心,以AO(或BO)的長為半徑畫弧,分別交半圓于點(diǎn)MN;

          (3)連接OM、ON即可

          請根據(jù)該同學(xué)的作圖方法完成以下推理:

          ∵半圓AB

             是直徑.

          CD是線段AB的垂直平分線

          OAOB(依據(jù):   

          OAOM   

          ∴△OAM為等邊三角形(依據(jù):   

          ∴∠AOM=60°(依據(jù):   

          同理可得∠BON=60°

          AOM=∠BON=∠MON=60°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店從廠家以21元的價格購進(jìn)一批商品,該商品可以自行定價,若每件商品售價為元,則可賣出(350-10)件,但物價局限定每件商品加價不能超過進(jìn)價的20%,商店計劃要賺400元,需要賣出多少件商品?每件商品應(yīng)售多少元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在矩形ABCD中,AB=8,AD=6,點(diǎn)M為對角線AC上的一個動點(diǎn)(不與端點(diǎn)A,C重合),過點(diǎn)M作ME⊥AD,MF⊥DC,垂足分別為E,F(xiàn),則四邊形EMFD面積的最大值為(

          A. 6 B. 12 C. 18 D. 24

          查看答案和解析>>

          同步練習(xí)冊答案