日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•沈陽(yáng))已知,如圖①,∠MON=60°,點(diǎn)A,B為射線(xiàn)OM,ON上的動(dòng)點(diǎn)(點(diǎn)A,B不與點(diǎn)O重合),且AB=4
          3
          ,在∠MON的內(nèi)部,△AOB的外部有一點(diǎn)P,且AP=BP,∠APB=120°.
          (1)求AP的長(zhǎng);
          (2)求證:點(diǎn)P在∠MON的平分線(xiàn)上.
          (3)如圖②,點(diǎn)C,D,E,F(xiàn)分別是四邊形AOBP的邊AO,OB,BP,PA的中點(diǎn),連接CD,DE,EF,F(xiàn)C,OP.
          ①當(dāng)AB⊥OP時(shí),請(qǐng)直接寫(xiě)出四邊形CDEF的周長(zhǎng)的值;
          ②若四邊形CDEF的周長(zhǎng)用t表示,請(qǐng)直接寫(xiě)出t的取值范圍.
          分析:(1)過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q.根據(jù)等腰三角形的“三線(xiàn)合一”的性質(zhì)推知AQ=BQ=
          1
          2
          AB,然后在直角三角形中利用特殊角的三角函數(shù)的定義可以求得AP的長(zhǎng)度;
          (2)作輔助線(xiàn)PS、PT(過(guò)點(diǎn)P分別作PS⊥OM于點(diǎn)S,PT⊥ON于點(diǎn)T)構(gòu)建全等三角形△APS≌△BPT;然后根據(jù)全等三角形的性質(zhì)推知PS=PT;最后由角平分線(xiàn)的性質(zhì)推知點(diǎn)P在∠MON的平分線(xiàn)上;
          (3)利用三角形中位線(xiàn)定理知四邊形CDEF的周長(zhǎng)的值是OP+AB.①當(dāng)AB⊥OP時(shí),根據(jù)直角三角形中銳角三角函數(shù)的定義可以求得OP的長(zhǎng)度;②當(dāng)AB⊥OP時(shí),OP取最大值,即四邊形CDEF的周長(zhǎng)取最大值;當(dāng)點(diǎn)A或B與點(diǎn)O重合時(shí),四邊形CDEF的周長(zhǎng)取最小值.
          解答:(1)解:過(guò)點(diǎn)P作PQ⊥AB于點(diǎn)Q.
          ∵PA=PB,∠APB=120°,AB=4
          3

          ∴AQ=BQ=2
          3
          ,∠APQ=60°(等腰三角形的“三線(xiàn)合一”的性質(zhì)),
          在Rt△APQ中,sin∠APQ=
          AQ
          AP

          ∴AP=
          AQ
          sin∠APQ
          =
          2
          3
          sin60°
          =
          2
          3
          3
          2
          =4;

          (2)證明:過(guò)點(diǎn)P分別作PS⊥OM于點(diǎn)S,PT⊥ON于點(diǎn)T.
          ∴∠OSP=∠OTP=90°(垂直的定義); 
          在四邊形OSPT中,∠SPT=360°-∠OSP-∠SOB-∠OTP=360°-90°-60°-90°=120°,
          ∴∠APB=∠SPT=120°,∴∠APS=∠BPT;
          又∵∠ASP=∠BTP=90°,AP=BP,
          ∴△APS≌△BPT,
          ∴PS=PT(全等三角形的對(duì)應(yīng)邊相等)
          ∴點(diǎn)P在∠MON的平分線(xiàn)上;

          (3)①∵OP平分∠AOB,∠AOB=60°,OP⊥AB,
          ∴AQ=BQ=
          1
          2
          AB=2
          3
          ,
          OQ=
          AQ
          tan30°
          =6,
          同理:PQ=
          AQ
          tan60°
          =2,
          ∴OP=8,
          ∵點(diǎn)C,D,E,F(xiàn)分別是四邊形AOBP的邊AO,OB,BP,PA的中點(diǎn),
          ∴CD=EF=
          1
          2
          AB,CF=DE=
          1
          2
          OP,
          ∴四邊形CDEF的周長(zhǎng)為:8+4
          3
            
          ②CD和EF是△ABO和△ABP的中位線(xiàn),
          則CD=EF=
          1
          2
          AB=2
          3
          ,
          CF和DE分別是△AOP和△BOP的中位線(xiàn),則CF=DE=
          1
          2
          OP,
          當(dāng)AB⊥OP時(shí),OP為四點(diǎn)邊形AOBP外接圓的直徑時(shí),OP最大,其值是8,OP一定大于當(dāng)點(diǎn)A或B與點(diǎn)O重合時(shí)的長(zhǎng)度是4.
          則4+4
          3
          <t≤8+4
          3
          點(diǎn)評(píng):本題綜合考查了等腰三角形的性質(zhì)、三角形中位線(xiàn)定理、解直角三角形以及全等三角形的判定與性質(zhì).解答該題時(shí),利用了角平分線(xiàn)逆定理--到角兩邊的距離相等的點(diǎn)在角平分線(xiàn)角平分線(xiàn)上.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•沈陽(yáng))已知,如圖,在?ABCD中,延長(zhǎng)DA到點(diǎn)E,延長(zhǎng)BC到點(diǎn)F,使得AE=CF,連接EF,分別交AB,CD于點(diǎn)M,N,連接DM,BN.
          (1)求證:△AEM≌△CFN;
          (2)求證:四邊形BMDN是平行四邊形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•沈陽(yáng))已知點(diǎn)A為雙曲線(xiàn)y=
          kx
          圖象上的點(diǎn),點(diǎn)O為坐標(biāo)原點(diǎn),過(guò)點(diǎn)A作AB⊥x軸于點(diǎn)B,連接OA.若△AOB的面積為5,則k的值為
          10或-10
          10或-10

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•沈陽(yáng))已知△ABC∽△A′B′C′,相似比為3:4,△ABC的周長(zhǎng)為6,則△A′B′C′的周長(zhǎng)為
          8
          8

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (2012•沈陽(yáng))已知,如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)A的坐標(biāo)為(0,24),經(jīng)過(guò)原點(diǎn)的直線(xiàn)l1與經(jīng)過(guò)點(diǎn)A的直線(xiàn)l2相交于點(diǎn)B,點(diǎn)B坐標(biāo)為(18,6).
          (1)求直線(xiàn)l1,l2的表達(dá)式;
          (2)點(diǎn)C為線(xiàn)段OB上一動(dòng)點(diǎn)(點(diǎn)C不與點(diǎn)O,B重合),作CD∥y軸交直線(xiàn)l2于點(diǎn)D,過(guò)點(diǎn)C,D分別向y軸作垂線(xiàn),垂足分別為F,E,得到矩形CDEF.
          ①設(shè)點(diǎn)C的縱坐標(biāo)為a,求點(diǎn)D的坐標(biāo)(用含a的代數(shù)式表示)
          ②若矩形CDEF的面積為60,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)C的坐標(biāo).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案