日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°,BEAD于點(diǎn)E,且四邊形ABCD的面積為144,則BE________

          【答案】12

          【解析】

          BFCDCD的延長線于點(diǎn)F,由已知條件可證得∠ABE=CBF,且由已知∠AEB=CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF,四邊形ABCD的面積等于新正方形FBED的面積,即可得BE長.

          B點(diǎn)作BFCD,與DC的延長線交于F點(diǎn),則∠F=90°,

          BE⊥ADAEB=∠BED=90°,

          ∵∠CDA=90°,

          ∴四邊形BEDF是矩形,

          ∴∠EBF=90°,

          ∵∠ABC=90°,

          ∴∠ABE+EBC=CBF+EBC,

          ∴∠ABE=CBF,

          AB=BC

          ∴△ABE≌△CBF,

          BE=BF

          ∴矩形BEDF為正方形,

          S正方形BEDF=SBCF+S四邊形BEDC= SBAE+S四邊形BEDC=S四邊形ABCD=144

          BE2=144,

          BE=12,

          故答案為:12

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AB是⊙O的一條弦,EAB的中點(diǎn),過點(diǎn)EECOA于點(diǎn)C,過點(diǎn)B作⊙O的切線交CE的延長線于點(diǎn)D.

          (1)求證:DB=DE;

          (2)若AB=12,BD=5,求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a+kbka+b)(其中k為常數(shù),且),則稱點(diǎn)P′為點(diǎn)Pk屬派生點(diǎn)”.例如:P(1,4)屬派生點(diǎn)為P′(1+2×4,2×1+4),即P′(9,6).

          (1)點(diǎn)P(-23)“2屬派生點(diǎn)”P′的坐標(biāo)為__________.

          (2) 若點(diǎn)P“3屬派生點(diǎn)”P′的坐標(biāo)為(6,2),求點(diǎn)P的坐標(biāo);

          (3) 若點(diǎn)Px軸的正半軸上,點(diǎn)P“k屬派生點(diǎn)P′點(diǎn),且線段PP′的長度為線段OP長度的2倍,求k的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,⊙A分別與x軸、y軸相切.若將⊙A向右平移5個(gè)單位,圓心A恰好落在直線y=2x﹣4上,則⊙A的半徑為( 。

          A. B. 2 C. 4 D. 6

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC4AB3,分別以ABAC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE

          1)請找出圖中與BE相等的線段,并說明理由;

          2)當(dāng)∠ABC30°時(shí),求線段BE長;

          3)直接寫出線段BE長的最大值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,AFDEF,且DF=15cmEF=6cm,AE=10cm.

          1)求AF的長;

          2)求正方形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】1)閱讀理解:

          如圖①,在ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

          解決此問題可以用如下方法:延長AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB,AC2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________;

          (2)問題解決: 如圖②,在ABC,DBC邊上的中點(diǎn),DEDF于點(diǎn)D,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF,求證:BE+CFEF;

          (3)問題拓展:如圖③,在四邊形ABCD,B+D=180°,CB=CD,C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,ADEF兩點(diǎn),連接EF,EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長為半徑畫弧,兩弧交于C,D兩點(diǎn),作直線CDAB于點(diǎn)M,DEAB,BECD.

          (1)判斷四邊形ACBD的形狀,并說明理由;

          (2)求證:ME=AD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,在ABC中,∠A>B,分別以點(diǎn)A,C為圓心,大于AC長為半徑畫弧,兩弧交于點(diǎn)P,點(diǎn)Q,作直線PQAB于點(diǎn)D,再分別以點(diǎn)B,D為圓心,大于BD長為半徑畫弧,兩弧交于點(diǎn)M,點(diǎn)N,作直線MNBC于點(diǎn)E,若CDE是等邊三角形,則∠A=_____

          查看答案和解析>>

          同步練習(xí)冊答案