日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知點O內(nèi)部,連接OA,OBOC,說明:

          【答案】證明見解析

          【解析】

          延長BOACD.在△AOB、△BOC、△AOC中,由三角形三邊關(guān)系定理列式,三式相加可得2(OA+OB+OC)AB+BC+AC,即可證明不等式左邊部分成立.在△ADO、△BDC中,由三角形三邊關(guān)系定理列式,兩式相加可得OA+BOAC+BC,同理可得:OC+OBAB+AC,OC+OAAB+BC,三式相加即可證明不等式右邊部分成立.

          延長BOACD

          中,,①

          ,②

          中,,③

          ①+②+③得

          在△ADO中,OAAD+OD,

          在△BDC中,BDDC+BC,

          OA+BDAD+OD+DC+BC,

          OA+BO+ODAC+OD+BC

          OA+BOAC+BC

          同理:

          ,⑥

          ④+⑤+⑥得

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系xOy中,有一個等腰直角三角形AOB,∠OAB=90°,直角邊AO在x軸上,且AO=1.將Rt△AOB繞原點O順時針旋轉(zhuǎn)90°得到等腰直角三角形A1OB1,且A1O=2AO,再將Rt△A1OB1繞原點O順時針旋轉(zhuǎn)90°得到等腰三角形A2OB2,且A2O=2A1O…,依此規(guī)律,得到等腰直角三角形A2017OB2017.則點B2017的坐標(biāo)_______

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知二次函數(shù)y=﹣x2+bx+c(b,c為常數(shù))的圖象經(jīng)過點A(3,1),點C(0,4),頂點為點M,過點A作AB∥ x軸,交y軸于點D,交該二次函數(shù)圖象于點B,連結(jié)BC.

          (1)求該二次函數(shù)的解析式及點M的坐標(biāo);

          (2)若將該二次函數(shù)圖象向下平移m(m>0)個單位,使平移后得到的二次函數(shù)圖象的頂點落在△ ABC的內(nèi)部(不包括△ ABC的邊界),求m的取值范圍;

          (3)點P是直線AC上的動點,若點P,點C,點M所構(gòu)成的三角形與△ BCD相似,請直接寫出所有點P的坐標(biāo)(直接寫出結(jié)果,不必寫過程).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】我國宋朝數(shù)學(xué)家楊在他的著作《詳解九章算法》中提出“楊輝三角”(如圖所示),此圖揭示了 n為非負(fù)整數(shù))展開式的項數(shù)及各項系數(shù)的有關(guān)規(guī)律.

          例如:,它只有一項,系數(shù)為1;,它有兩項,系數(shù)分別為11,系數(shù)和為2;,它有三項,系數(shù)分別為1,2,1,系數(shù)和為4;,它有四項系數(shù)分別為1,33,1,系數(shù)和為8;……根據(jù)以上規(guī)律,解答下列問題:

          1展開式共有________項,系數(shù)分別為________

          2展開式共有________項,系數(shù)和為________

          3展開結(jié)果為________

          4)利用上面的規(guī)律計算:

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,△ABC內(nèi)接于⊙O,且AB=AC.延長BC到點D,使CD=CA,連接AD交⊙O于點E.

          (1)求證:△ABE≌△CDE;

          (2)填空:

          ①當(dāng)∠ABC的度數(shù)為 時,四邊形AOCE是菱形;

          ②若AE=6,BE=8,則EF的長為 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某文具商店銷售功能相同的兩種品牌的計算器,購買2個A品牌和1個B品牌的計算器共需122元;購買1個A品牌和2個B品牌的計算器共需124元.

          (1)求這兩種品牌計算器的單價;

          (2)學(xué)校開學(xué)前夕,該商店舉行促銷活動,具體辦法如下:購買A品牌計算器按原價的九折銷售,購買B品牌計算器超出10個以上超出的部分按原價的八折銷售,設(shè)購買x個A品牌的計算器需要y1元,購買x個B品牌的計算器需要y2元,分別求出y1、y2關(guān)于x的函數(shù)關(guān)系式;

          小明準(zhǔn)備聯(lián)系一部分同學(xué)集體購買同一品牌的計算器,若購買計算器的數(shù)量超過10個,問購買哪種品牌的計算器更合算?請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列條件中,不能判定四邊形ABCD是平行四邊形的是( 。

          A. B. ,

          C. ,D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知,正方形ABCD中,點EBC邊上任意一點(點E不與BC重合),點F在線段AE上,過點F的直線,分別交AB、CD于點MN

          1)如圖,求證:;

          2)如圖,當(dāng)點FAE中點時,連接正方形的對角線BDMNBD交于點G,連接BF,求證:;

          3)如圖,在(2)的條件下,若,求BM的長度.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,點O在直線AB上,OCOD是兩條射線,OCOD,射線OE平分∠BOC

          1)若∠DOE150°,求∠AOC的度數(shù).

          2)若∠DOEα,則∠AOC  .(請用含α的代數(shù)式表示)

          查看答案和解析>>

          同步練習(xí)冊答案