日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在RtABC中,∠ACB90°,∠A30°,AB12,點(diǎn)FAB的中點(diǎn),過(guò)點(diǎn)FFDABAC于點(diǎn)D

          1)若△AFD以每秒2個(gè)單位長(zhǎng)度的速度沿射線FB向右移動(dòng),得到△A1F1D1,當(dāng)F1與點(diǎn)B重合時(shí)停止移動(dòng).設(shè)移動(dòng)時(shí)間為t秒,△A1F1D1與△CBF重疊部分的面積記為S.直接寫(xiě)出St的函數(shù)關(guān)系式.

          2)在(1)的基礎(chǔ)上,如果D1,B,F構(gòu)成的△D1BF為等腰三角形,求出t值.

          【答案】1)(1)當(dāng)0t1時(shí), S2t2;當(dāng)1t2時(shí), S=﹣t2+6t3;當(dāng)2t3時(shí),﹣t2+12t9;(2t的值為3

          【解析】

          1)分三種情形:如圖1中,當(dāng)0t2時(shí),重疊部分是△PFF1如圖2中,當(dāng)2t4時(shí),重疊部分是四邊形FPD1F1如圖3中,當(dāng)4t6時(shí),重疊部分是五邊形FQRPF1.分別求解即可解決問(wèn)題.

          2)分三種情形:BDD1F,BDBD1,D1FD1B分別求解即可.

          解:(1如圖1中,當(dāng)0t≤1時(shí),重疊部分是△PFF1,

          ∠ACB90°∠A30°,點(diǎn)FAB的中點(diǎn),FDAB

          ∴∠B=60°,CF=BF

          ∴△FBC為等邊三角形

          ∴∠P FF1=60°

          ∴∠FPF1=30°

          由題意可得FF1=2t

          PF=2 FF1=4t,根據(jù)勾股定理可得PF1=2t

          SFF1PF1×2t2t2t2

          如圖2中,當(dāng)1t≤2時(shí),重疊部分是四邊形FPD1F1,過(guò)點(diǎn)PPHAB

          AF=AB=6

          在△AFD中,設(shè)DF==x,則AD=2x

          根據(jù)勾股定理可得x262=2x2

          解得:x=2

          由題意可得FF1=2t

          FA1=62t ,

          ∵∠FPA1=CFH-∠PA1F=30°

          PF= FA1=62t ,

          PH=PF=3t

          SAF·DFA1F·PH=﹣t2+6t3

          如圖3中,當(dāng)2t≤3時(shí),重疊部分是五邊形FQRPF1,過(guò)點(diǎn)QQHAB

          由②同理FA1=62t QH=3t

          BF1=BFFF1=62t,PF1= BF1=62t

          D1P=DFPF1=2t4

          D1R= D1P=t2,PR= D1P=3t6

          由平移可知∠BRQ=BCA=90°

          ∴∠D1RP=90°

          SAF·DFA1F·PHD1R·PR=﹣t2+12t9

          綜上所述:當(dāng)0t1時(shí), S2t2;當(dāng)1t2時(shí), S=﹣t2+6t3;當(dāng)2t3時(shí),﹣t2+12t9;

          2如圖4中,當(dāng)BFBD16時(shí),

          Rt△BF1D1中,BF12,

          ∴AA1FF162

          ∴tAA1÷2=3

          如圖5中,當(dāng)D1FD1B時(shí),

          D1F1FB

          AA1FF1F1B3,

          tAA1÷2=

          如圖6中,當(dāng)FD1FB6時(shí),

          根據(jù)勾股定理可得FF1

          AA1FF12

          tAA1÷2=,

          綜上所述,滿足條件的t的值為3

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在正方形ABCD中,AC為對(duì)角線,EAB上一點(diǎn),過(guò)點(diǎn)EEF∥AD,與AC,DC分別交于點(diǎn)G,F(xiàn),HCG的中點(diǎn),連接DE,EH,DH,F(xiàn)H.下列結(jié)論中結(jié)論正確的有(

          ①EG=DF;

          ②∠AEH+∠ADH=180°;

          ③△EHF≌△DHC;

          ,則SEDH=13SCFH .

          A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一塊直角三角形的木板,它的一條直角邊AC長(zhǎng)為1.5米,面積為1.5平方米.現(xiàn)在要把它加工成一個(gè)正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個(gè)正方形面積分別為S1、S2,請(qǐng)通過(guò)計(jì)算比較S1S2的大小.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸是直線x=-1,有以下結(jié)論:①abc>0;4ac<b2;2a+b=0;a-b+c>0.其中正確的結(jié)論的個(gè)數(shù)是(  )

          A. 1 B. 2 C. 3 D. 4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,△ABC是等邊三角形,AC上有一點(diǎn)D,分別以BD為邊作等邊△BDE和等腰△BDF,邊BC、DE交于點(diǎn)H,點(diǎn)FBA延長(zhǎng)線上且DBDF,連接CE

          1)若AB8,AD4,求△BDF的面積;

          2)求證:BCAF+CE

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖(1),在中,上一點(diǎn),平分,,.

          1)求證:

          2)如圖(2),若,連接為邊上一點(diǎn),滿足,連接. ①求的度數(shù);

          ②若平分,試說(shuō)明:平分.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).

          (1)求這個(gè)二次函數(shù)的解析式;

          (2)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和PBC的最大面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某商人將進(jìn)貨單價(jià)為元的某種商品按元銷(xiāo)售時(shí),每天可賣(mài)出件.現(xiàn)在他采用提高售價(jià)的辦法增加利潤(rùn),已知這種商品銷(xiāo)售單價(jià)每漲元,銷(xiāo)售量就減少件,那么他將售價(jià)每個(gè)定為________元時(shí),才能使每天所賺的利潤(rùn)最大,每天最大利潤(rùn)是________元.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫(huà)弧交AD于點(diǎn)E,連接CE,作BFCE,垂足為F,則tanFBC的值為( 。

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案