日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012•畢節(jié)地區(qū))如圖,直線l1經(jīng)過點(diǎn)A(-1,0),直線l2經(jīng)過點(diǎn)B(3,0),l1、l2均為與y軸交于點(diǎn)C(0,-
          3
          ,拋物線y=ax2+bx+c(a≠0)經(jīng)過A、B、C三點(diǎn).
          (1)求拋物線的函數(shù)表達(dá)式;
          (2)拋物線的對稱軸依次與x軸交于點(diǎn)D、與l2交于點(diǎn)E、與拋物線交于點(diǎn)F、與l1交于點(diǎn)G.求證:DE=EF=FG;
          (3)若l1⊥l2于y軸上的C點(diǎn)處,點(diǎn)P為拋物線上一動(dòng)點(diǎn),要使△PCG為等腰三角形,請寫出符合條件的點(diǎn)P的坐標(biāo),并簡述理由.
          分析:(1)已知A、B、C三點(diǎn)坐標(biāo),利用待定系數(shù)法求出拋物線的解析式;
          (2)D、E、F、G四點(diǎn)均在對稱軸x=1上,只要分別求出其坐標(biāo),就可以得到線段DE、EF、FG的長度.
          D是對稱軸與x軸交點(diǎn),F(xiàn)是拋物線頂點(diǎn),其坐標(biāo)易求;E是對稱軸與直線l2交點(diǎn),需要求出l2的解析式,G是對稱軸與l1的交點(diǎn),需要求出l1的解析式,而A、B、C三點(diǎn)坐標(biāo)已知,所以l1、l2的解析式可以用待定系數(shù)法求出.至此本問解決;
          (3)△PCG為等腰三角形,需要分三種情況討論.如解答圖所示,在解答過程中,充分注意到△ECG為含30度角的直角三角形,△P1CG為等邊三角形,分別利用其幾何性質(zhì),則本問不難解決.
          解答:解:(1)拋物線y=ax2+bx+c(a≠0)經(jīng)過A(-1,0),B(3,0),C(0,-
          3
          )三點(diǎn),
          a-b+c=0
          9a+3b+c=0
          c=-
          3
          ,解得a=
          3
          3
          ,b=-
          2
          3
          3
          ,c=-
          3

          ∴拋物線的解析式為:y=
          3
          3
          x2-
          2
          3
          3
          x-
          3


          (2)設(shè)直線l1的解析式為y=kx+b,由題意可知,直線l1經(jīng)過A(-1,0),C(0,-
          3
          )兩點(diǎn),
          -k+b=0
          b=-
          3
          ,解得k=-
          3
          ,b=-
          3
          ,∴直線l1的解析式為:y=-
          3
          x-
          3

          直線l2經(jīng)過B(3,0),C(0,-
          3
          )兩點(diǎn),同理可求得直線l2解析式為:y=
          3
          3
          x-
          3

          ∵拋物線y=
          3
          3
          x2-
          2
          3
          3
          x-
          3
          =
          3
          3
          (x-1)2-
          4
          3
          3
          ,
          ∴對稱軸為x=1,D(1,0),頂點(diǎn)坐標(biāo)為F(1,-
          4
          3
          3
          );
          點(diǎn)E為x=1與直線l2:y=
          3
          3
          x-
          3
          的交點(diǎn),令x=1,得y=-
          2
          3
          3
          ,∴E(1,-
          2
          3
          3
          );
          點(diǎn)G為x=1與直線l1:y=-
          3
          x-
          3
          的交點(diǎn),令x=1,得y=-2
          3
          ,∴G(1,-2
          3
          ).
          ∴各點(diǎn)坐標(biāo)為:D(1,0),E(1,-
          2
          3
          3
          ),F(xiàn)(1,-
          4
          3
          3
          ),G(1,-2
          3
          ),它們均位于對稱軸x=1上,
          ∴DE=EF=FG=
          2
          3
          3


          (3)如右圖,過C點(diǎn)作C關(guān)于對稱軸x=1的對稱點(diǎn)P1,CP1交對稱軸于H點(diǎn),連接CF.
          △PCG為等腰三角形,有三種情況:
          ①當(dāng)CG=PG時(shí),如右圖,由拋物線的對稱性可知,此時(shí)P1滿足P1G=CG.
          ∵C(0,-
          3
          ),對稱軸x=1,∴P1(2,-
          3
          ).
          ②當(dāng)CG=PC時(shí),此時(shí)P點(diǎn)在拋物線上,且CP的長度等于CG.
          如右圖,C(0,-
          3
          ),H點(diǎn)在x=1上,∴H(1,-
          3
          ),
          在Rt△CHG中,CH=1,HG=|yG-yH|=|-2
          3
          -(-
          3
          )|=
          3
          ,
          ∴由勾股定理得:CG=
          12+(
          3
          )
          2
          =2.
          ∴PC=2.
          如右圖,CP1=2,此時(shí)與①中情形重合;
          又Rt△OAC中,AC=
          12+(
          3
          )
          2
          =2,∴點(diǎn)A滿足PC=2的條件,但點(diǎn)A、C、G在同一條直線上,所以不能構(gòu)成等腰三角形.
          ③當(dāng)PC=PG時(shí),此時(shí)P點(diǎn)位于線段CG的垂直平分線上.
          ∵l1⊥l2,∴△ECG為直角三角形,
          由(2)可知,EF=FG,即F為斜邊EG的中點(diǎn),
          ∴CF=FG,∴F為滿足條件的P點(diǎn),∴P2(1,-
          4
          3
          3
          );
          又cos∠CGE=
          CG
          EG
          =
          3
          2
          ,∴∠CGE=30°,∴∠HCG=60°,
          又P1C=CG,∴△P1CG為等邊三角形,
          ∴P1點(diǎn)也在CG的垂直平分線上,此種情形與①重合.
          綜上所述,P點(diǎn)的坐標(biāo)為P1(2,-
          3
          )或P2(1,-
          4
          3
          3
          ).
          點(diǎn)評:作為中考壓軸題,本題考查的知識(shí)點(diǎn)比較多,包括二次函數(shù)的圖象與性質(zhì)、待定系數(shù)法求函數(shù)(二次函數(shù)、一次函數(shù))解析式、等腰三角形、等邊三角形以及勾股定理等.難點(diǎn)在于第(3)問,需要針對等腰三角形△PCG的三種可能情況分別進(jìn)行討論,在解題過程中,需要充分挖掘并利用題意隱含的條件(例如直角三角形、等邊三角形),這樣可以簡化解答過程.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•畢節(jié)地區(qū))如圖①,有一張矩形紙片,將它沿對角線AC剪開,得到△ACD和△A′BC′.
          (1)如圖②,將△ACD沿A′C′邊向上平移,使點(diǎn)A與點(diǎn)C′重合,連接A′D和BC,四邊形A′BCD是
          平行四邊
          平行四邊
          形;
          (2)如圖③,將△ACD的頂點(diǎn)A與A′點(diǎn)重合,然后繞點(diǎn)A沿逆時(shí)針方向旋轉(zhuǎn),使點(diǎn)D、A、B在同一直線上,則旋轉(zhuǎn)角為
          90
          90
          度;連接CC′,四邊形CDBC′是
          直角梯
          直角梯
          形;
          (3)如圖④,將AC邊與A′C′邊重合,并使頂點(diǎn)B和D在AC邊的同一側(cè),設(shè)AB、CD相交于E,連接BD,四邊形ADBC是什么特殊四邊形?請說明你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•畢節(jié)地區(qū))畢節(jié)市某地盛產(chǎn)天麻,為了解今年這個(gè)地方天麻的收成情況,特調(diào)查了20戶農(nóng)戶,數(shù)據(jù)如下:(單位:千克)則這組數(shù)據(jù)的( 。
          300   200   150   100    500   100    350    500    300    400
          150   400   200   350    300   200    150    100    450    500.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•畢節(jié)地區(qū))如圖,雙曲線y=
          k
          x
          (k≠0)
          上有一點(diǎn)A,過點(diǎn)A作AB⊥x軸于點(diǎn)B,△AOB的面積為2,則該雙曲線的表達(dá)式為
          y=-
          4
          x
          y=-
          4
          x

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•畢節(jié)地區(qū))某商品的進(jìn)價(jià)為每件20元,售價(jià)為每件30元,每個(gè)月可賣出180件;如果每件商品的售價(jià)每上漲1元,則每個(gè)月就會(huì)少賣出10件,但每件售價(jià)不能高于35元,設(shè)每件商品的售價(jià)上漲x元(x為整數(shù)),每個(gè)月的銷售利潤為y元.
          (1)求y與x的函數(shù)關(guān)系式,并直接寫出自變量x的取值范圍;
          (2)每件商品的售價(jià)為多少元時(shí),每個(gè)月可獲得最大利潤?最大利潤是多少?
          (3)每件商品的售價(jià)定為多少元時(shí),每個(gè)月的利潤恰好是1920元?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•畢節(jié)地區(qū))下列計(jì)算正確的是( 。

          查看答案和解析>>

          同步練習(xí)冊答案