日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知,四邊形ABCD中,∠BAD=60°,AB=AC=AD,對角線AC平分∠BAD,直角三角板30°角的頂點(diǎn)與A點(diǎn)重合,
          (1)如圖,當(dāng)三角板的兩邊分別與BC、CD交于E、F時(shí),通過觀察或測量,猜想線段BE和CF之間的數(shù)量關(guān)系,并證明;
          (2)如圖,當(dāng)三角板的兩邊分別與BC、CD的延長線交于E、F時(shí),通過觀察或測量,猜想線段BE和CF之間的數(shù)量關(guān)系,并證明.
          分析:(1)求出∠BAC=∠EAF=30°,∠B=∠ACD,推出∠BAE=∠CAF,根據(jù)AAS證△BAE和△CAF全等即可;
          (2)與(1)類似,推出∠BAE=∠CAF,根據(jù)ASA證△BAE和△CAF全等即可.
          解答:(1)線段BE和CF之間的數(shù)量關(guān)系是BE=CF,
          證明:∵AC平分∠BAD,∠BAD=60°,
          ∴∠BAC=∠CAD=30°,
          ∵∠EAF=30°,
          ∴∠BAC-∠EAC=∠EAF-∠EAC,
          即∠BAE=∠CAF,
          ∵AB=AC=AD,
          ∴∠B=∠ACB=
          1
          2
          (180°-∠BAC)=75°,
          同理∠ACD=∠D=75°,
          ∴∠B=∠ACD,
          在△BAE和△CAF中
          ∠B=∠ACD
          ∠BAE=∠CAF
          AB=AC

          ∴△BAE≌△CAF,
          ∴BE=CF.

          (2)線段BE和CF之間的數(shù)量關(guān)系是BE=CF,
          證明:∵∠BAC=∠EAF=30°,
          ∴∠BAC+∠CAE=∠EAF+∠CAE,
          即∠BAE=∠CAF,
          在△BAE和△CAF中
          ∠BAE=∠CAF
          AB=AC
          ∠B=∠ACD
          ,
          ∴△BAE≌△CAF,
          ∴BE=CF.
          點(diǎn)評:本題考查了含30度角的直角三角形,角平分線性質(zhì),全等三角形的性質(zhì)和判定,等式的性質(zhì),三角形的內(nèi)角和定理,等腰三角形的性質(zhì)等知識點(diǎn),主要考查學(xué)生綜合運(yùn)用這些性質(zhì)進(jìn)行分析問題和解決問題的能力,此題綜合性比較強(qiáng),但難度適中.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          我們給出如下定義:如果四邊形中一對頂點(diǎn)到另一對頂點(diǎn)所連對角線的距離相等,則把這對頂點(diǎn)叫做這個(gè)四邊形的一對等高點(diǎn).例如:如圖1,平行四邊形ABCD中,可證點(diǎn)A、C到BD的距離相等,所以點(diǎn)A、C是平行四邊形ABCD的一對等高點(diǎn),同理可知點(diǎn)B、D也是平行四邊形ABCD的一對等高點(diǎn).
          (1)如圖2,已知平行四邊形ABCD,請你在圖2中畫出一個(gè)只有一對等高點(diǎn)的四邊形ABCE(要求:畫出必要的輔助線);
          (2)已知P是四邊形ABCD對角線BD上任意一點(diǎn)(不與B、D點(diǎn)重合),請分別探究圖3、圖4中S1,S2,S3,S4四者之間的等量關(guān)系(S1,S2,S3,S4分別表示△ABP,△CBP,△CDP,△ADP的面積):
          ①如圖3,當(dāng)四邊形ABCD只有一對等高點(diǎn)A、C時(shí),你得到的一個(gè)結(jié)論是
           

          ②如圖4,當(dāng)四邊形ABCD沒有等高點(diǎn)時(shí),你得到的一個(gè)結(jié)論是
           

          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知,四邊形ABCD是菱形,AC=6,BD=8,求AB的長和菱形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          34、如圖:在平行四邊形ABCD中,∠B=30°,AE⊥BC于點(diǎn)E,AF⊥DC的延長線于點(diǎn)F,已知平行四邊形ABCD的周長為40cm,且AE:AF=2:3.求平行四邊形ABCD的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)如圖,已知在四邊形ABCD中,AC與BD相交于點(diǎn)O,AB⊥AC,CD⊥BD.
          (1)求證:△AOD∽△BOC;
          (2)若sin∠ABO=
          23
          ,S△AOD=4,求S△BOC的值.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,已知平行四邊形ABCD,E是邊AB的中點(diǎn),聯(lián)結(jié)AC、DE交于點(diǎn)O.記向量
          AB
          =
          a
          ,
          AD
          =
          b
          ,則向量
          OE
          =
          1
          6
          a
          -
          1
          3
          b
          1
          6
          a
          -
          1
          3
          b
          (用向量
          a
          、
          b
          表示).

          查看答案和解析>>

          同步練習(xí)冊答案