日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,拋物線軸的兩個(gè)交點(diǎn)分別為A(-3,0)、B(1,0),過頂點(diǎn)CCHx軸于點(diǎn)H.

          (1)根據(jù)題意求b的值及頂點(diǎn)C的坐標(biāo);

          (2)在軸上是否存在點(diǎn)D,使得△ACD是以AC為斜邊的直角三角形?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說明理由;

          (3)若點(diǎn)Px軸上方的拋物線上一動(dòng)點(diǎn)(點(diǎn)P與頂點(diǎn)C不重合),PQAC于點(diǎn)Q,當(dāng)△PCQ與△ACH相似時(shí),求點(diǎn)P的坐標(biāo).

           

           


          解:(1),頂點(diǎn)C的坐標(biāo)為(-1,4)

          (2)假設(shè)在y軸上存在滿足條件的點(diǎn)D, 過點(diǎn)CCEy軸于點(diǎn)E.

          由∠CDA=90°得,∠1+∠2=90°. 又∠2+∠3=90°,

          ∴∠3=∠1. 又∵∠CED=∠DOA =90°,

          ∴△CED ∽△DOA,∴.

          設(shè)D(0,c),則.

          變形得,解之得.

          綜合上述:在y軸上存在點(diǎn)D(0,3)或(0,1),

          使△ACD是以AC為斜邊的直角三角形.

          (3)①若點(diǎn)P在對稱軸右側(cè)(如圖①),只能是△PCQ∽△CAH,得∠QCP=∠CAH.

          延長CPx軸于M,∴AM=CM, ∴AM2=CM2.

          設(shè)Mm,0),則( m+3)2=42+(m+1)2,∴m=2,即M(2,0).

          設(shè)直線CM的解析式為y=k1x+b1

          , 解之得.

          ∴直線CM的解析式.

          聯(lián)立,解之得(舍去).∴.    9分

          ②若點(diǎn)P在對稱軸左側(cè)(如圖②),只能是△PCQ∽△ACH,得∠PCQ=∠ACH.

          ACA的垂線交PC于點(diǎn)F,作FNx軸于點(diǎn)N.

             由△CFA∽△CAH,

          由△FNA∽△AHC

             ∴, 點(diǎn)F坐標(biāo)為(-5,1).

          設(shè)直線CF的解析式為y=k2x+b2,則,解之得.

          ∴直線CF的解析式.

          聯(lián)立 ,解之得(舍去). ∴.

          ∴滿足條件的點(diǎn)P坐標(biāo)為  


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
          (-6,8)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對稱,則a+b=
          -7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
          (1)請?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過A、B、C三點(diǎn)的函數(shù)關(guān)系式.
          (2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,在平面直角坐標(biāo)系中,開口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
          2
          2

          (1)求拋物線的函數(shù)解析式;
          (2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
          (3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過程記為【90°,2】變換.
          (1)在圖中畫出所有符合要求的△A1B1C1;
          (2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
          0°(或360°的整數(shù)倍)
          ,k=
          2

          查看答案和解析>>

          同步練習(xí)冊答案