日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標(biāo)系中,直線y=-x+m交y軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)C坐標(biāo)(
          m
          2
          ,0 ),作C關(guān)于AB對(duì)稱點(diǎn)F,連BF和OF,OF交AC于點(diǎn)E,交AB于點(diǎn)M.
          (1)求證:OF⊥AC;
          精英家教網(wǎng)
          (2)連接CF交AB于點(diǎn)H,求證:AH=
          3
          2
          CF;
          精英家教網(wǎng)
          (3)若m=2,E為x軸負(fù)半軸上一動(dòng)點(diǎn),連接ME,過(guò)點(diǎn)M作EM的垂線交FB的延長(zhǎng)線于點(diǎn)D,問(wèn)EB-BD的值是否改變,若不變,求其值,若改變,求其取值范圍.
          精英家教網(wǎng)
          分析:(1)先求出A,B的坐標(biāo),再通過(guò)對(duì)稱得到FB=BC且垂直x軸,從而證直角△OAC≌直角△FOB,得到OF⊥AC.
          (2)利用勾股定理和等腰直角三角形的性質(zhì)分別求出BA,BF,BH即可.
          (3)過(guò)M點(diǎn)作MN⊥x軸于N點(diǎn),MH⊥DF于H點(diǎn),證明直角△MEN≌直角△MDH.
          解答:證明:(1)C,F(xiàn)關(guān)于AB對(duì)稱,則FB⊥x軸,F(xiàn)B=BC.
          由y=-x+m得A(0,m),B(m,0),而C(
          m
          2
          ,0),所以O(shè)C=BC=BF,OA=OB,
          ∴直角△OAC≌直角△FOB
          ∴∠FOB=∠OAC
          ∴∠FOB+∠ACO=90°即OF⊥AC.

          (2)在直角三角形BCF中,BC=BF=
          m
          2
          ,所以CF=
          2
          2  
          m
          ,BH=
          2
          4
          m

          在直角三角形OAB中,AB=
          2
          m,
          ∴AH=
          2
          m-
          2
          4
          m=
          2
          4
          m
          ∴AH=
          3
          2
          CF.

          精英家教網(wǎng)(3)EB-BD的值不變,等于
          4
          3

          m=2,直線AB解析式:y=-x+2.F(2,1),直線OF的解析式為y=
          1
          2
          x,
          解方程組
          y=-x+2
          y= 
          1
          2
          x
          x= 
          4
          3
          y= 
          2
          3
          所以M(
          4
          3
          ,
          2
          3
          ).
          過(guò)M點(diǎn)作MN⊥x軸于N點(diǎn),MH⊥DF于H點(diǎn).如圖,
          ∵∠ABO=45°,
          ∴四邊形MNBH是正方形.
          ∴MN=BH=MH.
          又∵EM⊥MD,
          ∴∠MEN=∠MDH.
          ∴直角△MEN≌直角△MDH.
          ∴EN=DH.
          ∴EB-BD=EN+BN-BD=DH+BH-BD=2BH=
          4
          3
          點(diǎn)評(píng):會(huì)求直線與坐標(biāo)軸的交點(diǎn)坐標(biāo);學(xué)會(huì)構(gòu)建三角形全等,掌握全等三角形的性質(zhì);合理使用勾股定理進(jìn)行計(jì)算.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          28、在平面直角坐標(biāo)系中,點(diǎn)P到x軸的距離為8,到y(tǒng)軸的距離為6,且點(diǎn)P在第二象限,則點(diǎn)P坐標(biāo)為
          (-6,8)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          10、在平面直角坐標(biāo)系中,點(diǎn)P1(a,-3)與點(diǎn)P2(4,b)關(guān)于y軸對(duì)稱,則a+b=
          -7

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          在平面直角坐標(biāo)系中,有A(2,3)、B(3,2)兩點(diǎn).
          (1)請(qǐng)?jiān)偬砑右稽c(diǎn)C,求出圖象經(jīng)過(guò)A、B、C三點(diǎn)的函數(shù)關(guān)系式.
          (2)反思第(1)小問(wèn),考慮有沒(méi)有更簡(jiǎn)捷的解題策略?請(qǐng)說(shuō)出你的理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在平面直角坐標(biāo)系中,開(kāi)口向下的拋物線與x軸交于A、B兩點(diǎn),D是拋物線的頂點(diǎn),O為精英家教網(wǎng)坐標(biāo)原點(diǎn).A、B兩點(diǎn)的橫坐標(biāo)分別是方程x2-4x-12=0的兩根,且cos∠DAB=
          2
          2

          (1)求拋物線的函數(shù)解析式;
          (2)作AC⊥AD,AC交拋物線于點(diǎn)C,求點(diǎn)C的坐標(biāo)及直線AC的函數(shù)解析式;
          (3)在(2)的條件下,在x軸上方的拋物線上是否存在一點(diǎn)P,使△APC的面積最大?如果存在,請(qǐng)求出點(diǎn)P的坐標(biāo)和△APC的最大面積;如果不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          18、在平面直角坐標(biāo)系中,把一個(gè)圖形先繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)的角度為θ,再以原點(diǎn)為位似中心,相似比為k得到一個(gè)新的圖形,我們把這個(gè)過(guò)程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點(diǎn)O順時(shí)針旋轉(zhuǎn)的角度為90°,再以原點(diǎn)為位似中心,相似比為2得到一個(gè)新的圖形△A1B1C1,可以把這個(gè)過(guò)程記為【90°,2】變換.
          (1)在圖中畫出所有符合要求的△A1B1C1
          (2)若△OMN的頂點(diǎn)坐標(biāo)分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過(guò)【θ,k】變換后得到△O′M′N′,若點(diǎn)M的對(duì)應(yīng)點(diǎn)M′的坐標(biāo)為(-1,-2),則θ=
          0°(或360°的整數(shù)倍)
          ,k=
          2

          查看答案和解析>>

          同步練習(xí)冊(cè)答案