日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,已知:在ΔABC中,AB=AC,AD⊥BC,垂足為D,AN是ΔABC外角∠CAM的平分線,CE⊥AN,垂足為E.求證:四邊形ADCE是矩形.

          見解析

          解析試題分析:由AB=AC,AD⊥BC,根據(jù)“三線合一”可得AD平分∠BAC,即∠DAC=∠BAC,再根據(jù)AN平分∠CAM,可得∠NAC=∠CAM,從而得到∠DAN=90°,再有CE⊥AN,AD⊥BC即可證得結論。
          在△ABC中,AB=AC,AD⊥BC
          ∴AD平分∠BAC
          ∴∠DAC=∠BAC
          又∵AN是ΔABC外角∠CAM的平分線
          ∴∠NAC=∠CAM
          ∴∠DAC+∠NAC=(∠BAC+∠CAM)=90°
          即∠DAN=90°
          又∵CE⊥AN,AD⊥BC
          ∴∠ADC=∠AEC=90°
          ∴∠ADC=∠AEC=∠DAN = 90°
          ∴四邊形ADCE是矩形.
          考點:本題考查的是等腰三角形的性質,角平分線的性質,矩形的判定
          點評:解答本題的關鍵是運用“三線合一”及角平分線的性質得到∠DAN=90°。

          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知:在Rt△ABC中,∠C=90°,E為AB的中點,且DE⊥AB于E,若∠CAD:∠DAB=1﹕2,求∠B的度數(shù).

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:解答題

          如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,已知M在AB上,BC=BD,MC=MD.請說明:AC=AD.

          查看答案和解析>>

          科目:初中數(shù)學 來源:同步題 題型:解答題

          如圖,已知M在AB上,BC=BD,MC=MD,請說明:AC=AD。

          查看答案和解析>>

          同步練習冊答案