日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在平面直角坐標系中,以點P(3,0)為圓心,以6為半徑的圓與y軸的正半軸相交于點C,精英家教網(wǎng)與x軸分別交于A、B兩點.
          (1)試確定經(jīng)過A、B、C三點的拋物線的解析式;
          (2)在BC上確定一點D,使BD:CD=AB:AC,并給出證明;
          (3)設(shè)AD交y軸于E,過E作EF∥AB,交BC于F.求證:2EF=AB;
          (4)延長AD交⊙P于點G,求證:△CDG≌△EDF.
          分析:(1)已知了圓的半徑和圓心的坐標即可求出A、B兩點的坐標,AB為直徑則∠ACB=90°,根據(jù)射影定理可求出OC的長,然后根據(jù)A、B、C的坐標用待定系數(shù)法即可求出拋物線的解析式.
          (2)由(1)中A、C、B三點坐標不難得出∠ACB=60°,∠ABC=30°,如果作∠CAB的角平分線,那么D就是∠CAB的角平分線與BC的交點.此時∠BAD=∠ABD=30°,AD=BD,而根據(jù)相似安吉縣ACD和BCA可得出AD:AB=CD:AC,將相等的線段進行置換即可得出本題所求的結(jié)論.
          (3)在直角三角形EOA中,根據(jù)∠EAO=30°以及OA的長,可求出AE的長,根據(jù)(2)的結(jié)果和BC的長不難求出BD即AD的長,可發(fā)現(xiàn)AE=DE,過E作EF∥AB,那么EF就是△ABD的中位線,因此EF=
          1
          2
          AB.
          (4)由于∠ECD=∠CED=∠AEO=60°,因此△CED是等邊三角形,CD=DE,由此就不難的得出兩三角形全等了.
          解答:(1)解:易求得A(-3,0)、B(9,0)、C(0,3
          3
          ).
          設(shè)拋物線的解析式為y=ax2+bx+c,則有:
          9a-3b+c=0
          81a+9b+c=0
          c=3
          3

          解得:
          a=-
          3
          9
          b=
          2
          3
          3
          c=3
          3

          ∴拋物線的解析式為:y=-
          3
          9
          x2+
          2
          3
          3
          x+3
          3


          (2)解:由題可得:∠CAB=60°,∠ABC=30°
          作∠CAB的平分線AD交OC于E,交BC于D,D點即為所求的點,精英家教網(wǎng)
          易證:AD=BD,△ACD∽△BCA
          ∴CD:AD=AC:AB
          即BD:CD=AB:AC

          (3)證明:由題可得:AE=2
          3
          ,AD=4
          3

          ∴E為AD的中點
          ∵EF∥AB
          ∴EF是△ABD的中位線
          ∴2EF=AB.

          (4)證明:由題可得:∠ECD=∠CED
          ∴CD=ED,∠DCG=∠DEF,∠CDG=∠EDF
          ∴△CDG≌△EDF.
          點評:本題著重考查了待定系數(shù)法求二次函數(shù)解析式、相似三角形的判定和性質(zhì)、全等三角形的判定和性質(zhì)、中位線定理等重要知識點,綜合性強,能力要求較高.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          28、在平面直角坐標系中,點P到x軸的距離為8,到y(tǒng)軸的距離為6,且點P在第二象限,則點P坐標為
          (-6,8)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          10、在平面直角坐標系中,點P1(a,-3)與點P2(4,b)關(guān)于y軸對稱,則a+b=
          -7

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          在平面直角坐標系中,有A(2,3)、B(3,2)兩點.
          (1)請再添加一點C,求出圖象經(jīng)過A、B、C三點的函數(shù)關(guān)系式.
          (2)反思第(1)小問,考慮有沒有更簡捷的解題策略?請說出你的理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,在平面直角坐標系中,開口向下的拋物線與x軸交于A、B兩點,D是拋物線的頂點,O為精英家教網(wǎng)坐標原點.A、B兩點的橫坐標分別是方程x2-4x-12=0的兩根,且cos∠DAB=
          2
          2

          (1)求拋物線的函數(shù)解析式;
          (2)作AC⊥AD,AC交拋物線于點C,求點C的坐標及直線AC的函數(shù)解析式;
          (3)在(2)的條件下,在x軸上方的拋物線上是否存在一點P,使△APC的面積最大?如果存在,請求出點P的坐標和△APC的最大面積;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          18、在平面直角坐標系中,把一個圖形先繞著原點順時針旋轉(zhuǎn)的角度為θ,再以原點為位似中心,相似比為k得到一個新的圖形,我們把這個過程記為【θ,k】變換.例如,把圖中的△ABC先繞著原點O順時針旋轉(zhuǎn)的角度為90°,再以原點為位似中心,相似比為2得到一個新的圖形△A1B1C1,可以把這個過程記為【90°,2】變換.
          (1)在圖中畫出所有符合要求的△A1B1C1;
          (2)若△OMN的頂點坐標分別為O(0,0)、M(2,4)、N(6,2),把△OMN經(jīng)過【θ,k】變換后得到△O′M′N′,若點M的對應(yīng)點M′的坐標為(-1,-2),則θ=
          0°(或360°的整數(shù)倍)
          ,k=
          2

          查看答案和解析>>

          同步練習冊答案