日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 下圖①是邊長分別為4和3的兩個等邊三角形紙片ABC和疊放在一起(C與重合).

          (1)操作:固定△ABC,將△繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于點F(如圖②).

          探究:在圖②中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.

          (2)操作:將圖②中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,CF為∠ACB的平分線,平移后的△CDE設為△PQR(如圖③).

          探究:設△PQR移動的時間為xs,△PQR與△AFC重疊部分的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出函數(shù)自變量x的取值范圍.

          (3)操作:將圖①中△固定,將△ABC移動,使頂點C落在的中點,邊BC交于點M,邊AC交于點N,設∠AC=α(30°<α<90°)(如圖④).

          探究:在圖④中,線段M的值是否隨α的變化而變化?如果沒有變化,請求出M的值;如果有變化,請說明理由.

          答案:
          解析:

            分析:本題是操作、探究結(jié)論型開放題.解題時抓住△ABC和△CDE都是等邊三角形,各個角都是60°這一特征,同時注意圖形運動的過程,“化動為靜”,“以靜制動”.

            解:(1)BE=AD.

            證明:因為△ABC與△DCE都是等邊三角形,

            所以∠ACB=∠DCE=60°,CA=CB,CE=CD.

            又∠BCE=30°,則∠BCE=∠ACD=30°.

            所以△BCE≌△ACD.

            所以BE=AD.(也可用旋轉(zhuǎn)方法證明BE=AD)

            (2)如圖,在△CQT中,

            因為∠TCQ=30°,∠PQT=60°,所以∠QTC=30°.

            所以∠QTC=∠TCQ.所以QT=QC=x,即RT=3-x.

            因為∠RTS+∠R=90°,

            所以∠RST=90°.

            所以y=S△PQR-SRt△RST×32×(3-x)2(0≤x≤3).

            (3)M的值不變.

            證明:因為∠ACB=60°,

            所以∠MC+∠NC=120°.

            因為∠CN十∠NC=120°,

            所以∠MC=∠CN

            因為∠=∠,則△MC∽△CN.

            所以

            即M=C=×


          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源: 題型:

          28、探究題:
          我們在前面學習過程中曾經(jīng)接確過“弦圖”,你能用四個全等的直角三角形畫出弦圖嗎?相信你肯定會了;那么請你根據(jù)你掌握的知識解決下面的問題:
          (1)試用邊長分別為1cm和2cm的2個正方形剪拼成一個大的正方形,并畫出示意圖.
          上面的問題你會了吧,那么你來試試解決下面的問題,相信自己肯定能行!
          (2)下圖是由5個相鄰的正方形組成的一個長方形,試把它剪成一個正方形,畫出示意圖.

          (3)請把一個寬為2,長為6.5的矩形紙片,剪拼成一個正方形,畫出示意圖.

          (4)請把一個長為9,寬為4的矩形紙片,剪拼成一個正方形,畫出示意圖.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          精英家教網(wǎng)“構(gòu)造法”是一種重要方法,它沒有固定的模式.要想用好它,需要有敏銳的觀察、豐富的想象、靈活的構(gòu)思.應用構(gòu)造法解題的關(guān)鍵有二:一是要有明確的方向,即為什么目的而構(gòu)造;二是要弄清條件的本質(zhì)特點,以便重新進行組合.
          例:在△ABC中,AB、BC、AC三邊長分別是
          5
          10
          、
          13
          ,求這個三角形的面積.
          小輝在解這道題時,畫一個正方形網(wǎng)格(每個正方形的邊長為1),再在網(wǎng)格中畫出格點(即的頂點都在小正方形的頂點處),如圖1所示,這樣不需要求的高,借助網(wǎng)格就能計算出它的面積.圖中的面積,可以看成是一個的正方形的面積減去三個小三角形的面積:S△ABC=3×3-
          1
          2
          ×3×1-
          1
          2
          ×2×1-
          1
          2
          ×3×2=
          7
          2

          思維拓展:已知△ABC的邊長分別為
          5a
          、2
          2a
          、
          17a
          (a>0)
          ,請在下圖所示的正方形網(wǎng)格中(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          下圖甲是任意一個直角三角形ABC,它的兩條直角邊的邊長分別為a、b,斜邊長為c.如圖乙、丙那樣分別取四個與直角三角形ABC全等的三角形,放在邊長為a+b的正方形內(nèi).

          ①圖乙、圖丙中(1)(2)(3)都是正方形.由圖可知:(1)是以
          a
          a
          為邊長的正方形,(2)是以
          b
          b
          為邊長的正方形,(3)的四條邊長都是
          c
          c
          ,且每個角都是直角,所以(3)是以
          c
          c
          為邊長的正方形.
          ②圖中(1)的面積
          a 2
          a 2
          ,(2)的面積為
          b 2
          b 2
          ,(3)的面積為
          c 2
          c 2

          ③圖中(1)(2)面積之和為
          a2+b 2
          a2+b 2

          ④圖中(1)(2)的面積之和與正方形(3)的面積有什么關(guān)系?為什么?由此你能得到關(guān)于直角三角形三邊長的關(guān)系嗎?

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:閱讀理解

          閱讀下列材料,并回答問題.
          畫一個直角三角形,使它的兩條直角邊分別為5和12,那么我們可以量得直角三角形的斜邊長為13,并且52+122=132.事實上,在任何一個直角三角形中,兩條直角邊的平方之和一定等于斜邊的平方.如果直角三角形中,兩直角邊長分別為a、b,斜邊長為c,則a2+b2=c2,這個結(jié)論就是著名的勾股定理.
          請利用這個結(jié)論,完成下面的活動:
          (1)一個直角三角形的兩條直角邊分別為6、8,那么這個直角三角形斜邊長為
          10
          10

          (2)滿足勾股定理方程a2+b2=c2的正整數(shù)組(a,b,c)叫勾股數(shù)組.例如(3,4,5)就是一組勾股數(shù)組.觀察下列幾組勾股數(shù)
          ①3,4,5; ②5,12,13; ③7,24,25;④9,40,41;
          請你寫出有以上規(guī)律的第⑤組勾股數(shù):
          11,60,61
          11,60,61

          (3)如圖,AD⊥BC于D,AD=BD,AC=BE.AC=3,DC=1,求BD的長度.

          (4)如圖,點A在數(shù)軸上表示的數(shù)是
          -
          5
          -
          5
          ,請用類似的方法在下圖數(shù)軸上畫出表示數(shù)
          3
          的B點(保留作圖痕跡).

          查看答案和解析>>

          同步練習冊答案