日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
          (1)求直線BC的解析式;
          (2)求拋物線的解析式;
          (3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

          【答案】分析:(1)求直線BC的解析式,首先要求出的是B、C的坐標,即OB、OC的長;連接O′B,在直角三角形O′DB中可根據(jù)O′D及半徑的長用勾股定理求出DB的長,然后根據(jù)OD的長即O′橫坐標的絕對值求出OB的長,即可求出B的坐標.求OC長,可根據(jù)△BOC∽△O′DB得出的比例線段來求出.求出B、C的坐標后,可用待定系數(shù)法求出直線BC的解析式.
          (2)由于拋物線過A、B兩點,根據(jù)拋物線的對稱性進可得出拋物線的對稱軸為x=-2,又已知拋物線的頂點在直線BC上,由此可求出拋物線頂點的坐標.然后用頂點式的二次函數(shù)通式來設(shè)拋物線的解析式,然后將B點坐標代入即可求出拋物線的解析式.
          (3)可根據(jù)(2)得出的拋物線的解析式,求出P點的坐標.由于四邊形DBPQ為平行四邊形,那么DP平行且相等于DB,因此可將P點坐標左移DB長即4個單位,即可得出Q點,然后將Q點坐標代入拋物線的解析式中即可判斷出Q點是否在拋物線上.
          解答:解:(1)連接O′B
          ∵O′(-2,-3),MN過點O′且與x軸垂直
          ∴O′D=3,OD=2,AD=BD=AB
          ∵⊙O′的半徑為5
          ∴BD=AD=4
          ∴OA=6,OB=2
          ∴點A、B的坐標分別為(-6,0)、(2,0)
          ∵BC切⊙O′于B
          ∴O′B⊥BC
          ∴∠OBC+∠O′BD=90°
          ∵∠O′BD+∠BO′D=90°
          ∴∠OBC=∠BO′D
          ∵∠BOC=∠BDO′=90°
          ∴△BOC∽△O′DB

          ∴OC==
          ∴點C的坐標為(0,
          設(shè)直線BC的解析式為y=kx+b

          解得
          ∴直線BC的解析式為y=-x+;

          (2)由圓和拋物線的對稱性可知MN是拋物線的對稱軸,
          ∴拋物線頂點的橫坐標為-2
          ∵拋物線的頂點在直線y=-x+
          ∴y=即拋物線的頂點坐標為(-2,
          設(shè)拋物線的解析式為y=a(x+6)(x-2)
          =a(-2+6)(-2-2)
          解得
          ∴拋物線的解析式為y=-(x+6)(x-2)=-x2-x+4;

          (3)由(2)得拋物線與y軸的交點P的坐標為(0,4),
          若四邊形DBPQ是平行四邊形,
          則有BD∥PQ,BD=PQ,
          ∴點Q的縱坐標為4
          ∵BD=4
          ∴PQ=4
          ∴點Q的橫坐標為-4
          ∴點Q的坐標為(-4,4)
          ∴當x=-4時,y=-x2-x+4=-×16++4=4
          ∴點Q在拋物線上
          ∴在拋物線上存在一點Q(-4,4),使四邊形DBPQ為平行四邊形.
          點評:本題考查了待定系數(shù)法求二次函數(shù)解析式、三角形相似、平行四邊形的判定等知識點,綜合性強,考查學生數(shù)形結(jié)合的數(shù)學思想方法.
          練習冊系列答案
          相關(guān)習題

          科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《二次函數(shù)》(05)(解析版) 題型:解答題

          (2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
          (1)求直線BC的解析式;
          (2)求拋物線的解析式;
          (3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2006年全國中考數(shù)學試題匯編《二次函數(shù)》(10)(解析版) 題型:解答題

          (2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
          (1)求直線BC的解析式;
          (2)求拋物線的解析式;
          (3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2006年四川省巴中市中考數(shù)學試卷(大綱卷)(解析版) 題型:解答題

          (2006•巴中)如圖,在平面直角坐標系中,以點0′(-2,-3)為圓心,5為半徑的圓交x軸于A、B兩點,過點B作⊙O′的切線,交y軸于點C,過點0′作x軸的垂線MN,垂足為D,一條拋物線(對稱軸與y軸平行)經(jīng)過A、B兩點,且頂點在直線BC上.
          (1)求直線BC的解析式;
          (2)求拋物線的解析式;
          (3)設(shè)拋物線與y軸交于點P,在拋物線上是否存在一點Q,使四邊形DBPQ為平行四邊形?若存在,請求出點Q的坐標;若不存在,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《四邊形》(09)(解析版) 題型:解答題

          (2006•巴中)如圖,梯形ABCD中,AB∥DC,∠B=90°,E為BC上一點,且AE⊥ED.若BC=12,DC=7,BE:EC=1:2,求AB的長.

          查看答案和解析>>

          同步練習冊答案