日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖1,的直徑,是弦,點(diǎn)的中點(diǎn),的延長(zhǎng)線于

          1)求證:的切線;

          2)如圖2,作,交,若,,求的長(zhǎng).

          【答案】1)見(jiàn)解析;(28

          【解析】

          1)連接BC、OP,由AB是⊙O的直徑、PEAEPEBC,根據(jù)點(diǎn)P的中點(diǎn)知OPBC,即可得OPPE;
          2)由(1)知,四邊形PECQ是矩形,從而可設(shè)PE=CQ=BQ=x,根據(jù)勾股定理求得BN的長(zhǎng),先證△BHN∽△BQO,表示出BO、OQ的長(zhǎng),再證△PQN∽△BHN,即,求出x即可.

          解:(1)如圖1,連接BCOP,

          AB是⊙O的直徑,
          ∴∠ACB=90°,即BCAE,
          又∵PEAE
          PEBC,
          ∵點(diǎn)P的中點(diǎn),
          OPBC
          OPPE,
          PE是⊙O的切線;

          2)如圖2,連接OP,

          由(1)知,四邊形PECQ是矩形,
          ∴設(shè)PE=CQ=BQ=x,
          NH=3,BH=4PHAB
          BN=5,
          ∵∠B=B,∠BHN=BQO=90°,
          ∴△BHN∽△BQO,

          ,即,

          解得:BO=,OQ=,
          PQ=PO-OQ=BO-OQ=
          ∵∠PNQ=BNH,∠PQN=BHN=90°,
          ∴△PQN∽△BHN

          ,

          ,

          解得:,

          PE=8.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為推進(jìn)揚(yáng)州市五個(gè)一百工程活動(dòng),小明、小亮、小麗3人分別從A、B兩種不同的名著中任意選擇一種閱讀

          1)小明選擇A種名著閱讀的概率是   ;

          2)求小明、小亮、小麗3人選擇同一種名著閱讀的概率(請(qǐng)用畫(huà)樹(shù)狀圖的方法給出分析過(guò)程,并求出結(jié)果)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)本課堂的實(shí)踐中,王老師經(jīng)常讓學(xué)生以問(wèn)題為中心進(jìn)行自主、合作、探究學(xué)習(xí).

          (課堂提問(wèn))王老師在課堂中提出這樣的問(wèn)題:如圖1,在RtABC中,∠ACB=90°,∠BAC=30°,那么BCAB有怎樣的數(shù)量關(guān)系?

          (互動(dòng)生成)經(jīng)小組合作交流后,各小組派代表發(fā)言.

          1)小華代表第3小組發(fā)言:AB=2BC. 請(qǐng)你補(bǔ)全小華的證明過(guò)程.

          證明:把ABC沿著AC翻折,得到ADC.

          ∴∠ACD=ACB=90°,

          ∴∠BCD=ACD+ACB=90°+90°=180°,

          即:點(diǎn)B、CD共線.(請(qǐng)?jiān)谙旅嫜a(bǔ)全小華的證明過(guò)程)

          2)受到第3小組翻折的啟發(fā),小明代表第2小組發(fā)言:如圖2,在ABC中,如果把條件ACB=90°”改為ACB=135°”,保持BAC=30°”不變,若BC=1,求AB的長(zhǎng).

          (思維拓展)如圖3,在四邊形ABCD中,∠BCD=45°,∠BAD=90°,∠ADB=CDB=60°,且AC=3,則ABD的周長(zhǎng)為 .

          (能力提升)如圖4,點(diǎn)DABC內(nèi)一點(diǎn),AD=AC,∠BAD=CAD=20°,∠ADB+ACB=210°,則AD、DBBC三者之間的相等關(guān)系是 .

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內(nèi),將矩形AOCB以原點(diǎn)O為位似中心放大為原來(lái)的倍,得到矩形A1OC1B1,再將矩形A1OC1B1以原點(diǎn)O為位似中心放大倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對(duì)角線交點(diǎn)的坐標(biāo)為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,拋物線的頂點(diǎn)為B(1,3),與軸的交點(diǎn)A在點(diǎn) (2,0)和(3,0)之間.以下結(jié)論:

          ;;;⑤若,且,

          .其中正確的結(jié)論有

          A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,方格紙上每個(gè)小正方形的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度,點(diǎn)AB都在格點(diǎn)上(兩條網(wǎng)格線的交點(diǎn)叫格點(diǎn)).

          1)將線段AB向上平移兩個(gè)單位長(zhǎng)度,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)A1,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)B1,請(qǐng)畫(huà)出平移后的線段A1B1;

          2)將線段A1B1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,點(diǎn)B1的對(duì)應(yīng)點(diǎn)為點(diǎn)B2,請(qǐng)畫(huà)出旋轉(zhuǎn)后的線段A1B2;

          3)連接AB2BB2,求△ABB2的面積.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正方形ABCD的邊長(zhǎng)為4,點(diǎn)EF分別在AB,AD上,若CE5,且∠ECF45°,則CF的長(zhǎng)為_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】二次函數(shù)y=﹣x2+bx+c的圖象與直線y=﹣x+1相交于AB兩點(diǎn)(如圖),A點(diǎn)在y軸上,過(guò)點(diǎn)BBCx軸,垂足為C(3,0).

          (1)填空:b_____,c_____.

          (2)點(diǎn)N是二次函數(shù)圖象上一點(diǎn)(點(diǎn)NAB上方),過(guò)NNPx軸,垂足為點(diǎn)P,交AB于點(diǎn)M,求MN的最大值;

          (3)(2)的條件下,點(diǎn)N在何位置時(shí),BMNC相互垂直平分?并求出所有滿足條件的N點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直角三角形ABC中,∠ABC=90°,點(diǎn)DBC的延長(zhǎng)線上,且BD=AB,過(guò)BBEAC,與BD的垂線DE交于點(diǎn)E,

          1)求證:△ABC≌△BDE

          2)三角形BDE可由三角形ABC旋轉(zhuǎn)得到,利用尺規(guī)作出旋轉(zhuǎn)中心O(保留作圖痕跡,不寫(xiě)作法)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案