日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標(biāo)系xOy中,對(duì)“隔離直線(xiàn)”給出如下定義:
          點(diǎn)P(x,m)是圖形G1上的任意一點(diǎn),點(diǎn)Q(x,n)是圖形G2上的任意一點(diǎn),若存在直線(xiàn)l:kx+b(k≠0)滿(mǎn)足m≤kx+b且n≥kx+b,則稱(chēng)直線(xiàn)l:y=kx+b(k≠0)是圖形G1與G2的“隔離直線(xiàn)”.
          如圖1,直線(xiàn)l:y=﹣x﹣4是函數(shù)y= (x<0)的圖象與正方形OABC的一條“隔離直線(xiàn)”.

          (1)在直線(xiàn)y1=﹣2x,y2=3x+1,y3=﹣x+3中,是圖1函數(shù)y= (x<0)的圖象與正方形OABC的“隔離直線(xiàn)”的為;
          請(qǐng)你再寫(xiě)出一條符合題意的不同的“隔離直線(xiàn)”的表達(dá)式:;
          (2)如圖2,第一象限的等腰直角三角形EDF的兩腰分別與坐標(biāo)軸平行,直角頂點(diǎn)D的坐標(biāo)是( ,1),⊙O的半徑為2.是否存在△EDF與⊙O的“隔離直線(xiàn)”?若存在,求出此“隔離直線(xiàn)”的表達(dá)式;若不存在,請(qǐng)說(shuō)明理由;

          (3)正方形A1B1C1D1的一邊在y軸上,其它三邊都在y軸的右側(cè),點(diǎn)M(1,t)是此正方形的中心.若存在直線(xiàn)y=2x+b是函數(shù)y=x2﹣2x﹣3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線(xiàn)”,請(qǐng)直接寫(xiě)出t的取值范圍.

          【答案】
          (1)y1=﹣2x;y=﹣3x
          (2)

          連接OD,過(guò)點(diǎn)D作DG⊥x軸于點(diǎn)G,如圖.

          在Rt△DGO中,OD= =2,

          sin∠1= = ,

          ∴∠1=30°,∠2=60°,

          ∵⊙O的半徑為2,

          ∴點(diǎn)D在⊙O上.

          過(guò)點(diǎn)D作DH⊥OD交y軸于點(diǎn)H,

          ∴直線(xiàn)DH是⊙O的切線(xiàn),也是△EDF與⊙O的“隔離直線(xiàn)”.

          在Rt△ODH中,OH= =4,

          ∴點(diǎn)H的坐標(biāo)是(0,4),

          ∴直線(xiàn)DH的表達(dá)式為y=﹣ x+4,

          即所求“隔離直線(xiàn)”的表達(dá)式為y=﹣ x+4


          (3)

          如圖,

          由題意F(4,5),當(dāng)直線(xiàn)y=2x+b經(jīng)過(guò)點(diǎn)F時(shí),5=8+b,

          ∴b=﹣3,

          ∴直線(xiàn)y=2x﹣3,即圖中直線(xiàn)EF,

          ∵正方形A1B1C1D1的中心M(1,t),

          易知正方形正方形A1B1C1D1的邊長(zhǎng)為2,

          當(dāng)x=2時(shí),y=1,

          ∴C1(2,1),直線(xiàn)EF是函數(shù)y=x2﹣2x﹣3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線(xiàn)”,此時(shí)t=2,

          當(dāng)直線(xiàn)y=2x+b與y=x2﹣2x﹣3只有一個(gè)交點(diǎn)時(shí),

          消去y得到x2﹣4x﹣3+b=0,

          由△=0,可得16﹣4(﹣3﹣b)=0,

          解得b=﹣7,

          此時(shí)易知M(1,﹣8),t=﹣8,

          根據(jù)圖象可知,當(dāng)t≥2或t≤﹣8時(shí),直線(xiàn)y=2x+b是函數(shù)y=x2﹣2x﹣3(0≤x≤4)的圖象與正方形A1B1C1D1的“隔離直線(xiàn)”


          【解析】解:(1)根據(jù)的“隔離直線(xiàn)”的定義可知y1=﹣2x,是圖1函數(shù)y= (x<0)的圖象與正方形OABC的“隔離直線(xiàn)”,直線(xiàn)y=﹣3x也是圖1函數(shù)y= (x<0)的圖象與正方形OABC的“隔離直線(xiàn)”,所以答案是y1=﹣2x,y=﹣3x.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,∠BOC=60°,點(diǎn)A是BO延長(zhǎng)線(xiàn)上的一點(diǎn),OA=10cm,動(dòng)點(diǎn)P從點(diǎn)A出發(fā)沿AB以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OC以1cm/s的速度移動(dòng),如果點(diǎn)P,Q同時(shí)出發(fā),用t(s)表示移動(dòng)的時(shí)間,當(dāng)t=________s時(shí),△POQ是等腰三角形;當(dāng)t=_______s時(shí),△POQ是直角三角形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一副三角板按如圖放置,下列結(jié)論:①∠1=3;②若BCAD,則∠4=3;③若∠2=15°,必有∠4=2D;④若∠2=30°,則有ACDE. 其中正確的有_____.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在ABCD中,過(guò)點(diǎn)A作AE⊥BC于點(diǎn)E,AF⊥DC于點(diǎn)F,AE=AF.
          (1)求證:四邊形ABCD是菱形;
          (2)若∠EAF=60°,CF=2,求AF的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】解答題
          定義:把四邊形的某些邊向兩方延長(zhǎng),其他各邊有不在延長(zhǎng)所得直線(xiàn)的同一旁,這樣的四邊形叫做凹四邊形.如圖1,四邊形ABCD為凹四邊形.

          (1)性質(zhì)探究:請(qǐng)完成凹四邊形一個(gè)性質(zhì)的證明.
          已知:如圖2,四邊形ABCD是凹四邊形.
          求證:∠BCD=∠B+∠A+∠D.

          (2)性質(zhì)應(yīng)用:
          如圖3,在凹四邊形ABCD中,∠BAD的角平分線(xiàn)與∠BCD的角平分線(xiàn)交于點(diǎn)E,若∠ADC=140°,∠AEC=102°,則∠B=°.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在探索“尺規(guī)三等分角”這個(gè)數(shù)學(xué)名題的過(guò)程中,曾利用了如圖,該圖中,四邊形ABCD是矩形,E是BA延長(zhǎng)線(xiàn)上一點(diǎn),F(xiàn)是CE上一點(diǎn),∠ACF=∠AFC,∠FAE=∠FEA。若∠ACB=21°,則∠ECD的度數(shù)是( )

          A.7°
          B.21°
          C.23°
          D.24°

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知:在△ABC中,∠ACB=90°,CD為高,且CD、CE三等分∠ACB.

          (1)求∠B的度數(shù).

          (2)求證:CE是AB邊上的中線(xiàn),且

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義:有一組鄰邊相等,并且它們的夾角是直角的凸四邊形叫做等腰直角四邊形.

          (1)如圖1,等腰直角四邊形ABCD,AB=BC,∠ABC=90°,
          ①若AB=CD=1,AB//CD,求對(duì)角線(xiàn)BD的長(zhǎng).
          ②若AC⊥BD,求證:AD=CD.
          (2)如圖2,在矩形ABCD中,AB=5,BC=9,點(diǎn)P是對(duì)角線(xiàn)BD上一點(diǎn),且BP=2PD,過(guò)點(diǎn)P作直線(xiàn)分別交邊AD,BC于點(diǎn)E,F(xiàn),使四邊形ABFE是等腰直角四邊形.求AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年秋,珊瑚中學(xué)開(kāi)啟“珊中大閱讀”活動(dòng),為了充實(shí)漂流書(shū)吧藏書(shū),號(hào)召全校學(xué)生捐書(shū),得到各班的大力支持.同時(shí),本部校區(qū)的兩個(gè)年級(jí)組也購(gòu)買(mǎi)藏書(shū)充實(shí)學(xué)校圖書(shū)室,初二年級(jí)組購(gòu)買(mǎi)了甲、乙兩種自然科學(xué)書(shū)籍若干本,用去8315;初一年級(jí)買(mǎi)了A、B兩種文學(xué)書(shū)籍若干本,用去6138元。其中A、B的數(shù)量分別與甲、乙的數(shù)量相等,且甲種書(shū)與B種書(shū)的單價(jià)相同,乙種書(shū)與A種書(shū)的單價(jià)相同.若甲種書(shū)的單價(jià)比乙種書(shū)的單價(jià)多7,則甲種書(shū)籍比乙種書(shū)籍多買(mǎi)了_____________.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案