日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)如圖1,點(diǎn)O是線段AD的中點(diǎn),分別以AO和DO為邊在線段AD的同側(cè)作等邊三角形OAB和等邊三角形OCD,連接AC和BD,相交于點(diǎn)E,連接BC.求∠AEB的大;
          (2)如圖2,△OAB固定不動(dòng),保持△OCD的形狀和大小不變,將△OCD繞點(diǎn)O旋轉(zhuǎn)(△OAB和△OCD不能重疊),求∠AEB的大。

          【答案】分析:(1)根據(jù)等邊三角形和外角的性質(zhì),可求∠AEB=60°;
          (2)方法同一,只是∠AEB=∠8-∠5,此時(shí)已不是外角,但仍可用外角和內(nèi)角的關(guān)系解答.
          解答:解:(1)如圖3,
          ∵△DOC和△ABO都是等邊三角形,
          且點(diǎn)O是線段AD的中點(diǎn),
          ∴OD=OC=OB=OA,∠1=∠2=60°,
          ∴∠4=∠5.
          又∵∠4+∠5=∠2=60°,
          ∴∠4=30°.
          同理∠6=30°.
          ∵∠AEB=∠4+∠6,
          ∴∠AEB=60°.

          (2)如圖4,
          ∵△DOC和△ABO都是等邊三角形,
          ∴OD=OC,OB=OA,∠1=∠2=60°.
          又∵OD=OA,
          ∴OD=OB,OA=OC,
          ∴∠4=∠5,∠6=∠7.
          ∵∠DOB=∠1+∠3,
          ∠AOC=∠2+∠3,
          ∴∠DOB=∠AOC.
          ∵∠4+∠5+∠DOB=180°,∠6+∠7+∠AOC=180°,
          ∴2∠5=2∠6,
          ∴∠5=∠6.
          又∵∠AEB=∠8-∠5,∠8=∠2+∠6,
          ∴∠AEB=∠2+∠6-∠5=∠2+∠5-∠5=∠2,
          ∴∠AEB=60°.
          點(diǎn)評(píng):此題主要考查等邊三角形和外角的性質(zhì).
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          在直角坐標(biāo)系中,y=x2+ax+2a與x軸交于A,B兩點(diǎn),點(diǎn)E(2,0)繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°后的對(duì)應(yīng)點(diǎn)C在此拋物線上,點(diǎn)P(4,2).
          (1)求拋物線解析式;
          (2)如圖1,點(diǎn)F是線段AC上一動(dòng)點(diǎn),作矩形FC1B1A1,使C1在CB上,B1,A1在AB上,設(shè)線段A1F的長為a,求矩形FC1B1A1的面積S與a的函數(shù)關(guān)系式,并求S的最大值;
          (3)如圖2,在(1)的拋物線上是否存在兩個(gè)點(diǎn)M,N,使以O(shè),M,N,P為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)M,N的坐標(biāo);若不存在,請(qǐng)說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1,點(diǎn)B是線段AD上一點(diǎn),△ABC和△BDE分別是等邊三角形,連接AE和CD.
          (1)求證:AE=CD;
          (2)如圖2,點(diǎn)P、Q分別是AE、CD的中點(diǎn),試判斷△PBQ的形狀,并證明.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•襄陽)如圖1,點(diǎn)A是線段BC上一點(diǎn),△ABD和△ACE都是等邊三角形.
          (1)連結(jié)BE,CD,求證:BE=CD;
          (2)如圖2,將△ABD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)得到△AB′D′.
          ①當(dāng)旋轉(zhuǎn)角為
          60
          60
          度時(shí),邊AD′落在AE上;
          ②在①的條件下,延長DD’交CE于點(diǎn)P,連接BD′,CD′.當(dāng)線段AB、AC滿足什么數(shù)量關(guān)系時(shí),△BDD′與△CPD′全等?并給予證明.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1)如圖1,點(diǎn)C是線段AB上一點(diǎn),分別以AC,BC為邊在AB的同側(cè)作等邊△ACM和△CBN,連接AN,BM.分別取BM,AN的中點(diǎn)E,F(xiàn),連接CE,CF,EF.觀察并猜想△CEF的形狀,并說明理由.
          (2)若將(1)中的“以AC,BC為邊作等邊△ACM和△CBN”改為“以AC,BC為腰在AB的同側(cè)作等腰△ACM和△CBN,”如圖2,其他條件不變,那么(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,請(qǐng)說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,若點(diǎn)P是反比例函數(shù)y=
          5
          2x
          圖象上的任意一點(diǎn),且PD⊥x軸于點(diǎn)D,則△POD的面積是
          5
          4
          5
          4

          查看答案和解析>>

          同步練習(xí)冊(cè)答案