日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:在△ABC中,∠BAC=90°,AB=AC,AE是過(guò)點(diǎn)A的一條直線,且BD⊥AE于D,CE⊥AE于E.
          (1)當(dāng)直線AE處于如圖①的位置時(shí),有BD=DE+CE,請(qǐng)說(shuō)明理由;
          (2)當(dāng)直線AE處于如圖②的位置時(shí),則BD、DE、CE的關(guān)系如何?請(qǐng)說(shuō)明理由;
          (3)歸納(1)、(2),請(qǐng)用簡(jiǎn)潔的語(yǔ)言表達(dá)BD、DE、CE之間的關(guān)系.
          分析:(1)由BD垂直于AE,得到三角形ABD為直角三角形,利用直角三角形兩銳角互余得到一對(duì)角互余,再由∠BAC=90°,得到一對(duì)角互余,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等,AB=AC,利用AAS可得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到AD=CE,BD=AE,由AE=AD+DE,等量代換即可得證;
          (2)當(dāng)直線AE處于如圖②的位置時(shí),則BD、DE、CE的關(guān)系為BD=DE-CE,理由為:同(1)得出三角形ABD與三角形ACE全等,由全等三角形的對(duì)應(yīng)邊相等得到AD=CE,BD=AE,由AE=DE-AD等量代換即可得證;
          (3)由(1)(2)總結(jié)得到當(dāng)D、E位于直線BC異側(cè)時(shí),BD=DE+CE;當(dāng)D、E位于直線BC同側(cè)時(shí),BD=DE-CE.
          解答:解:(1)證明:∵BD⊥AE,CE⊥AE,
          ∴∠BDA=∠AEC=90°,
          ∴∠ABD+∠BAD=90°,
          ∵∠BAC=90°,
          ∴∠BAD+∠EAC=90°
          ∴∠ABD=∠EAC,
          在△ABD和△CAE中
          ∠ADB=∠CEA=90°
          ∠ABD=∠EAC
          AB=AC
          ,
          ∴△ABD≌△CAE(AAS)
          ∴AD=CE,BD=AE,
          ∵AE=AD+DE,
          ∴BD=DE+CE;

          (2)BD、DE、CE的關(guān)系為BD=DE-CE,理由為:
          證明:在△ABD和△CAE中
          ∠ADB=∠CEA=90°
          ∠BAD=∠EAC
          AB=AC
          ,
          ∴△ABD≌△CAE(AAS)
          ∴AD=CE,BD=AE,
          ∵AE=DE-AD,
          ∴BD=DE-CE;

          (3)當(dāng)D、E位于直線BC異側(cè)時(shí),BD=DE+CE;當(dāng)D、E位于直線BC同側(cè)時(shí),BD=DE-CE.
          點(diǎn)評(píng):此題考查了全等三角形的判定與性質(zhì),以及等腰直角三角形的性質(zhì),利用了轉(zhuǎn)化及等量代換的思想,熟練掌握全等三角形的判定與性質(zhì)是解本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          25、已知:在△ABC中AB=AC,點(diǎn)D在CB的延長(zhǎng)線上.
          求證:AD2-AB2=BD•CD.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)(1)化簡(jiǎn):(a-
          1
          a
          )÷
          a2-2a+1
          a

          (2)已知:在△ABC中,AB=AC.
          ①設(shè)△ABC的周長(zhǎng)為7,BC=y,AB=x(2≤x≤3).寫(xiě)出y關(guān)于x的函數(shù)關(guān)系式;
          ②如圖,點(diǎn)D是線段BC上一點(diǎn),連接AD,若∠B=∠BAD,求證:△BAC∽△BDA.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          20、如圖,已知,在△ABC中,∠ABC和∠ACB的平分線交于點(diǎn)M,ME∥AB交BC于點(diǎn)E,MF∥AC交BC于點(diǎn)F.求證:△MEF的周長(zhǎng)等于BC的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          12、已知,在△ABC中,AB=AC=x,BC=6,則腰長(zhǎng)x的取值范圍是
          x>3

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          已知:在△ABC中,∠B<∠C,AD平分∠BAC,AE⊥BC,垂足為點(diǎn)E.∠B=38°,∠C=70°.
          ①求∠DAE的度數(shù);
          ②試寫(xiě)出∠DAE與∠B、∠C之間的一般等量關(guān)系式(只寫(xiě)結(jié)論)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案