日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知⊙O的半徑長為1,AB、AC是⊙O的兩條弦,且AB=AC,BO的延長線交AC于點D,聯(lián)結(jié)OA、OC.

          (1)求證:△OAD∽△ABD;
          (2)當(dāng)△OCD是直角三角形時,求B、C兩點的距離;
          (3)記△AOB、△AOD、△COD 的面積分別為S1、S2、S3 , 如果S2是S1和S3的比例中項,求OD的長.

          【答案】
          (1)

          證明:如圖1中,

          在△AOB和△AOC中,

          ∴△AOB≌△AOC,

          ∴∠C=∠B,

          ∵OA=OC,

          ∴∠OAC=∠C=∠B,∵∠ADO=∠ADB,

          ∴△OAD∽△ABD


          (2)

          解:如圖2中,

          ∵BD⊥AC,OA=OC,

          ∴AD=DC,

          ∴BA=BC=AC,

          ∴△ABC是等邊三角形,

          在Rt△OAD中,∵OA=1,∠OAD=30°,

          ∴OD= OA=

          ∴AD= = ,

          ∴BC=AC=2AD=


          (3)

          解:如圖3中,作OH⊥AC于H,設(shè)OD=x.

          ∵△DAO∽△DBA,

          = = ,

          = =

          ∴AD= ,AB= ,

          ∵S2是S1和S3的比例中項,

          ∴S22=S1S3

          ∵S2= ADOH,S1=S△OAC= ACOH,S3= CDOH,

          ∴( ADOH)2= ACOH CDOH,

          ∴AD2=ACCD,

          ∵AC=AB.CD=AC﹣AD= ,

          ∴( 2= ),

          整理得x2+x﹣1=0,

          解得x= ,

          經(jīng)檢驗:x= 是分式方程的根,且符合題意,

          ∴OD=


          【解析】(1)由△AOB≌△AOC,推出∠C=∠B,由OA=OC,推出∠OAC=∠C=∠B,由∠ADO=∠ADB,即可證明△OAD∽△ABD;(2)如圖2中,當(dāng)△OCD是直角三角形時,可以證明△ABC是等邊三角形即可解決問題;(3)如圖3中,作OH⊥AC于H,設(shè)OD=x.想辦法用x表示AD、AB、CD,再證明AD2=ACCD,列出方程即可解決問題;

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】為營造書香家庭,周末小亮和姐姐一起從家出發(fā)去圖書館借書,走了6分鐘忘帶借書證,小亮立即騎路邊共享單車返回家中取借書證,姐姐以原來的速度繼續(xù)向前行走,小亮取到借書證后騎單車原路原速前往圖書館,小亮追上姐姐后用單車帶著姐姐一起前往圖書館.已知單車的速度是步行速度的3倍,如圖是小亮和姐姐距家的路程y(米)與出發(fā)的時間x(分鐘)的函數(shù)圖象,根據(jù)圖象解答下列問題:
          (1)小亮在家停留了分鐘.
          (2)求小亮騎單車從家出發(fā)去圖書館時距家的路程y(米)與出發(fā)時間x(分鐘)之間的函數(shù)關(guān)系式.
          (3)若小亮和姐姐到圖書館的實際時間為m分鐘,原計劃步行到達(dá)圖書館的時間為n分鐘,則n﹣m=分鐘.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,點D在邊AC上,AD=5,DE⊥BC于點E,連結(jié)AE,則△ABE的面積等于

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】宏興企業(yè)接到一批產(chǎn)品的生產(chǎn)任務(wù),按要求必須在14天內(nèi)完成.已知每件產(chǎn)品的出廠價為60元.工人甲第x天生產(chǎn)的產(chǎn)品數(shù)量為y件,y與x滿足如下關(guān)系:y=

          (1)工人甲第幾天生產(chǎn)的產(chǎn)品數(shù)量為70件?
          (2)設(shè)第x天生產(chǎn)的產(chǎn)品成本為P元/件,P與x的函數(shù)圖象如圖.工人甲第x天創(chuàng)造的利潤為W元,求W與x的函數(shù)關(guān)系式,并求出第幾天時,利潤最大,最大利潤是多少?

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】2016年里約奧運會,中國跳水隊贏得8個項目中的7塊金牌,優(yōu)秀成績的取得離不開艱辛的訓(xùn)練.某跳水運動員在進(jìn)行跳水訓(xùn)練時,身體(看成一點)在空中的運動路線是如圖所示的一條拋物線,已知跳板AB長為2米,跳板距水面CD的高BC為3米,訓(xùn)練時跳水曲線在離起跳點水平距離1米時達(dá)到距水面最大高度k米,現(xiàn)以CD為橫軸,CB為縱軸建立直角坐標(biāo)系.
          (1)當(dāng)k=4時,求這條拋物線的解析式;
          (2)當(dāng)k=4時,求運動員落水點與點C的距離;
          (3)圖中CE= 米,CF= 米,若跳水運動員在區(qū)域EF內(nèi)(含點E,F(xiàn))入水時才能達(dá)到訓(xùn)練要求,求k的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,A點的坐標(biāo)為(﹣1,5),B點的坐標(biāo)為(3,3),C點的坐標(biāo)為(5,3),D點的坐標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點旋轉(zhuǎn)一個角度可以得到另一條線段,你認(rèn)為這個旋轉(zhuǎn)中心的坐標(biāo)是

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】下列四個圖形中,是軸對稱圖形,但不是中心對稱圖形的是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知菱形ABCD的周長為16,面積為8 ,E為AB的中點,若P為對角線BD上一動點,則EP+AP的最小值為

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】國家環(huán)保局統(tǒng)一規(guī)定,空氣質(zhì)量分為5級.當(dāng)空氣污染指數(shù)達(dá)0﹣50時為1級,質(zhì)量為優(yōu);51﹣100時為2級,質(zhì)量為良;101﹣200時為3級,輕度污染;201﹣300時為4級,中度污染;300以上時為5級,重度污染.泰州市環(huán)保局隨機抽取了2015年某些天的空氣質(zhì)量檢測結(jié)果,并整理繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息,解答下列各題:
          (1)本次調(diào)查共抽取了天的空氣質(zhì)量檢測結(jié)果進(jìn)行統(tǒng)計;
          (2)補全條形統(tǒng)計圖;
          (3)扇形統(tǒng)計圖中3級空氣質(zhì)量所對應(yīng)的圓心角為°;
          (4)如果空氣污染達(dá)到中度污染或者以上,將不適宜進(jìn)行戶外活動,根據(jù)目前的統(tǒng)計,請你估計2015年該城市有多少天不適宜開展戶外活動.(2015年共365天)

          查看答案和解析>>

          同步練習(xí)冊答案