日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,拋物線y= x2+mx+n與直線y=﹣ x+3交于A,B兩點,交x軸與D,C兩點,連接AC,BC,已知A(0,3),C(3,0).

          (1)求拋物線的解析式和tan∠BAC的值;
          (2)在(1)條件下,P為y軸右側(cè)拋物線上一動點,連接PA,過點P作PQ⊥PA交y軸于點Q,問:是否存在點P使得以A,P,Q為頂點的三角形與△ACB相似?若存在,請求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.

          【答案】解:(1)把A(0,3),C(3,0)代入y= x2+mx+n,得

          ,

          解得:

          ∴拋物線的解析式為y= x2 x+3.

          聯(lián)立 ,

          解得:

          ∴點B的坐標(biāo)為(4,1).

          過點B作BH⊥x軸于H,如圖1.∵C(3,0),B(4,1),

          ∴BH=1,OC=3,OH=4,CH=4﹣3=1,∴BH=CH=1.

          ∵∠BHC=90°,∴∠BCH=45°,BC=

          同理:∠ACO=45°,AC=3 ,

          ∴∠ACB=180°﹣45°﹣45°=90°,

          ∴tan∠BAC= ;

          (2)存在點P,使得以A,P,Q為頂點的三角形與△ACB相似.

          過點P作PG⊥y軸于G,

          則∠PGA=90°.

          設(shè)點P的橫坐標(biāo)為x,由P在y軸右側(cè)可得x>0,則PG=x.

          ∵PQ⊥PA,∠ACB=90°,∴∠APQ=∠ACB=90°.

          若點G在點A的下方,

          ①如圖2①,當(dāng)∠PAQ=∠CAB時,則△PAQ∽△CAB.

          ∵∠PGA=∠ACB=90°,∠PAQ=∠CAB,∴△PGA∽△BCA,

          ∴AG=3PG=3x.

          則P(x,3﹣3x).把P(x,3﹣3x)代入y= x2 x+3,得: x2 x+3=3﹣3x,

          整理得:x2+x=0,解得:x1=0(舍去),x2=﹣1(舍去).

          ②如圖2②,

          當(dāng)∠PAQ=∠CBA時,則△PAQ∽△CBA.

          同理可得:AG= PG= x,則P(x,3﹣ x),

          把P(x,3﹣ x)代入y= x2 x+3,得: x2 x+3=3﹣ x,

          整理得:x2 x=0,解得:x1=0(舍去),x2= ,∴P( , );

          若點G在點A的上方,

          ①當(dāng)∠PAQ=∠CAB時,則△PAQ∽△CAB,

          同理可得:點P的坐標(biāo)為(11,36).

          ②當(dāng)∠PAQ=∠CBA時,則△PAQ∽△CBA.

          同理可得:點P的坐標(biāo)為P( , ).

          綜上所述:滿足條件的點P的坐標(biāo)為(11,36)、( )、( , ).


          【解析】(1)將點A、B的坐標(biāo)代入拋物線的解析式得到關(guān)于m、n的方程組,從而可求得m、n;過點B作BH⊥OH,先求得點C的坐標(biāo),然后再證明△AOC和△BHC為等腰直角三角形,從而可求得∠ACB=90°,然后依據(jù)勾股定理可求得AC、BC的長,最后依據(jù)銳角三角函數(shù)的定義可求得答案。
          (2)過點P作PG⊥OA,當(dāng)G在點A的下方時,分為∠PAQ=∠CAB和∠PAQ=∠CBA兩種情況,當(dāng)點G在點A的上方,分為∠PAQ=∠CAB和∠PAQ=∠CBA兩情況分類計算即可..
          【考點精析】通過靈活運用二次函數(shù)圖象的平移和相似三角形的判定與性質(zhì),掌握平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減;相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知關(guān)于x的一元二次方程(m+1)x2﹣(m+3)x+2=0.
          (1)證明:不論m為何值時,方程總有實數(shù)根;
          (2)m為何整數(shù)時,方程有兩個不相等的正整數(shù)根.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】已知:RtABC中,∠C90°,AC3BC4,PAB上任意一點,PFACF,PEBCE,則EF的最小值是_____

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某商店需要購進甲、乙兩種商品共160件,其進價和售價如下表:(注:獲利=售價-進價)

          1)若商店計劃銷售完這批商品后能獲利1100元,問甲、乙兩種商品應(yīng)分別購進多少件?

          2)若商店計劃投入資金少于4300元,且銷售完這批商品后獲利多于1260元,請問有哪幾種購貨方案?并直接寫出其中獲利最大的購貨方案。

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,已知等邊三角形ABC的邊長為3,過AB邊上一點PPEAC于點E,QBC延長線上一點,取PA=CQ,連接PQ,交ACM,則EM的長為_________________.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】某電器商城銷售、兩種型號的電風(fēng)扇,進價分別為元、元,下表是近兩周的銷售情況:

          銷售時段

          銷售型號

          銷售收入

          種型號

          種型號

          第一周

          第二周

          1)求兩種型號的電風(fēng)扇的銷售單價;

          2)若商城準(zhǔn)備用不多于元的金額再采購這兩種型號的電風(fēng)扇共臺,求種型號的電風(fēng)扇最多能采購多少臺?

          3)在(2)的條件下商城銷售完這臺電風(fēng)能否實現(xiàn)利潤超過元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在扇形鐵皮AOB中,OA=20,AOB=36°,OB在直線 上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當(dāng)OA第一次落在l上時,停止旋轉(zhuǎn).則點O所經(jīng)過的路線長為
          ( )
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】如圖,小麗假期在娛樂場游玩時,想要利用所學(xué)的數(shù)學(xué)知識測量某個娛樂場地所在山坡AE的高度.她先在山腳下的點E處測得山頂A的仰角是30°,然后,她沿著坡度i=1∶1的斜坡步行15分鐘到達C處,此時,測得點A的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上,求出娛樂場地所在山坡AE的高度AB.(精確到0.1米,參考數(shù)據(jù): ≈1.41).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          【題目】計算題
          (1)計算: ﹣2﹣1+| ﹣2|﹣3sin30°
          (2)先化簡,再求值: ÷( ﹣1),其中a=3.

          查看答案和解析>>

          同步練習(xí)冊答案