日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 22、把兩個(gè)含有45°角的大小不同的直角三角板如圖放置,點(diǎn)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.
          說(shuō)明:AF⊥BE.
          分析:可通過(guò)全等三角形將相等的角進(jìn)行轉(zhuǎn)換來(lái)得出結(jié)論.本題中我們可通過(guò)證明三角形BEC和ACD全等得出∠FBD=∠CAD,根據(jù)∠CAD+∠CDA=90°,而∠BDF=∠ADC,因此可得出∠BFD=90°,進(jìn)而得出結(jié)論.那么證明三角形BED和ACD就是解題的關(guān)鍵,兩直角三角形中,EC=CD,BC=AC,兩直角邊對(duì)應(yīng)相等,因此兩三角形就全等了.
          解答:證明:AF⊥BE,理由如下:
          由題意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,
          ∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,
          ∴△ECD和△BCA都是等腰直角三角形,
          ∴EC=DC,BC=AC,∠ECD=∠ACB=90°.
          在△BEC和△ADC中
          EC=DC,∠ECB=∠DCA,BC=AC,
          ∴△BEC≌△ADC(SAS).
          ∴∠EBC=∠DAC.
          ∵∠DAC+∠CDA=90°,∠FDB=∠CDA,
          ∴∠EBC+∠FDB=90°.
          ∴∠BFD=90°,即AF⊥BE.
          點(diǎn)評(píng):本題考查了全等三角形的判定,通過(guò)全等三角形來(lái)將相等的角進(jìn)行適當(dāng)?shù)霓D(zhuǎn)換是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          (1)把兩個(gè)含有45°角的直角三角板如圖1放置,點(diǎn)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.求證:AF⊥BE.
          (2)把兩個(gè)含有30°角的直角三角板如圖2放置,點(diǎn)精英家教網(wǎng)D在BC上,連接BE,AD,AD的延長(zhǎng)線交BE于點(diǎn)F.問(wèn)AF與BE是否垂直?并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          把兩個(gè)含有45°角的直角三角板如圖1放置,點(diǎn)D在BC上,連接BE、AD,AD的延長(zhǎng)線交于BE于點(diǎn)F.
          (1)問(wèn):AD與BE在數(shù)量上和位置上分別有何關(guān)系?說(shuō)明理由.
          (2)若將45°角換成30°如圖2,AD與BE在數(shù)量和位置上分別有何關(guān)系?說(shuō)明理由.
          (3)若將圖2中兩個(gè)三角板旋轉(zhuǎn)成圖3、圖4、圖5的位置,則(2)中結(jié)論是否仍然成立,選擇其中一種圖形進(jìn)行說(shuō)明.
          精英家教網(wǎng)精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          26、把兩個(gè)含有45°角的直角三角板如圖放置,點(diǎn)D在AC上,連接AE、BD,試判斷AE與BD的關(guān)系,并說(shuō)明理由.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          把兩個(gè)含有45°角的直角三角板如圖放置,D在BC點(diǎn)上,連接BD、AD,AD的延長(zhǎng)線交BE于點(diǎn)F,求證:AF⊥BE.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案