日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.

          理由如下:∵AD⊥BC于D,EG⊥BC于G,( 已知 )
          ∴∠ADC=∠EGC=90°,(                        )
          ∴AD∥EG,(                                )
          ∴∠1=∠2,(                              )
                =∠3,(                             )
          又∵∠E=∠1,(        )
          ∴∠2=∠3 (                              )       
          ∴AD平分∠BAC.(                                       )
          垂直的定義;同位角相等,兩直線平行;兩直線平行,內錯角相等;兩直線平行,同位角相等;已知;等量代換;角平分線定義

          試題分析:根據(jù)垂直的定義、平行線的判定和性質、角平分線的性質依次分析即可.
          ∵AD⊥BC于D,EG⊥BC于G,(已知)
          ∴∠ADC=∠EGC=90°,( 垂直的定義 
          ∴AD∥EG,( 同位角相等,兩直線平行 
          ∴∠1=∠2,( 兩直線平行,內錯角相等 
          E=∠3,( 兩直線平行,同位角相等 
          又∵∠E=∠1( 已知 
          ∴∠2=∠3( 等量代換 
          ∴AD平分∠BAC( 角平分線定義 ).
          點評:平行線的判定和性質是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中比較常見的知識點,一般難度不大,需熟練掌握.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源:不詳 題型:填空題

          某城市的兩座高樓頂部各裝有一個射燈,如圖,當光柱相交在同一個平面時,∠1+∠2+∠3=__________°.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,∠1+∠2=180°,∠DAE=∠BCF,DA平分∠BDF.

          (1)AE與FC會平行嗎?說明理由.
          (2)AD與BC的位置關系如何?為什么?
          (3)BC平分∠DBE嗎?為什么?

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:填空題

          若一個角的余角比這個角的補角的一半小20°,則這個角的度數(shù)為______

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          (1)如圖,已知∠BAC+∠ACD=180°,AE平分∠BAC,CF平分∠ACG.則∠1與∠2的關系怎樣?試證明你的結論.(要求寫出推理過程和每一步的理由)

          (2)若將(1)中的條件改為∠BAC=∠ACG,其它條件不變,則∠1與∠2的上述關系還成立嗎?(直接寫出結論即可)

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖所示,已知BD平分∠ABC,∠C=62°,∠ABD=30°,∠ADC=118°,
          求∠A的度數(shù)。

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:單選題

          如圖,,,則的度數(shù)是
          A.B.  C.  D.

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          已知:如圖AB∥EF。說明:∠BCF=∠B+∠F

          解:經過C畫CD∥AB
          ∴∠B=∠1 (               )
          ∵AB∥EF
          而CD∥AB(畫圖)
          ∴CD∥EF (                     )
          ∴∠F=_______(                )
          ∴∠1+∠2=∠B+∠F(                )
          即∠BCF=∠B+∠F

          查看答案和解析>>

          科目:初中數(shù)學 來源:不詳 題型:解答題

          如圖,OB,OC是∠AOD的任意兩條射線,OM平分∠AOB,ON平分∠COD,若∠MON=70°,∠BOC=30°,求∠AOD的度數(shù)。

          查看答案和解析>>

          同步練習冊答案