日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 初中數學 > 題目詳情

          【題目】在平行四邊形中,,點在平行四邊形的邊上,且,連接,若,,則線段的長為__________

          【答案】

          【解析】

          根據題意,P點可能在AD邊上,也可能再CD邊上,分情況畫出圖形,通過三角函數知識解直角三角形即可求解.

          解:如圖,當點PAD邊上時,過點AAEBDBDE,

          為四邊形,,

          ADBCAD=BC,∠BAD=120°,

          ,,

          AD=3,

          AP=3-2=1,

          AB=AP

          AE平分∠BAD,BE=PE=,

          ∴∠1=2=60°

          ,

          BP=2BE=;

          如圖,當點P在邊DC上時,過點PPF垂直于BC的延長線,垂足為F,

          ∵四邊形ABCD為平行四邊形,

          ADBC,AB=DC=2,

          ∴∠D=PCF=60°,

          ,

          PC=2-1=1,

          ,

          ,

          ,

          BF=,

          ,

          綜上:的長為

          故答案為:

          練習冊系列答案
          相關習題

          科目:初中數學 來源: 題型:

          【題目】如圖,在平面直角坐標系中,點為坐標原點,拋物線軸交于點,點,與軸交于點,連接,點在第二象限的拋物線上,連接,線段交線段于點

          1)求拋物線的表達式;

          2)若的面積為,的面積為時,求點的坐標;

          3)已知點關于拋物線對稱軸的對稱點為點,連接,點軸上,當時,

          ①求滿足條件的所有點的坐標;

          ②當點在線段上時,點是線段外一點,,連接,將線段繞著點順時針旋轉,得到線段,連接,直接寫出線段的取值范圍.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】閱讀下面材料,完成(1)、(2)題.

          數學課上,老師出示了這樣一道題:中,,,于點,點的延長線上,且,平分于點,垂足為,探究線段的數量關系,并證明.

          同學們經過思考后,交流了自己的想法:

          小明:“通過觀察和度量,發(fā)現(xiàn)相等.”

          小強:“通過觀察和度量,發(fā)現(xiàn)圖中還有其它相等線段.”

          小偉:“通過構造全等三角形,經過進一步推理,可以得到線段的數量關系.”

          ……

          老師:“此題還有其它解法,同學們課后可以繼續(xù)探究,互相交流.”

          ……

          1)求證:;

          2)探究線段的數量關系(用含的代數式表示),并證明.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在中,,,以BC的中點O為圓心的分別與AB,AC相切于D,E兩點,則的長為(

          A.B.C.D.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,四邊形內接于,對角線的直徑,過點AC的垂線交AD的延長線于點E,點FCE的中點,連接DB,DCDF

          1)求證:DF的切線;

          2)若,求的值.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】已知:如圖1,在平面直角坐標系中,拋物線軸交于點、右),與軸交于點,且

          1)求拋物線的解析式;

          2)如圖2,點在第一象限拋物線上,連接,若,求點的坐標;

          3)在(2)的條件下,如圖3,過點軸,線段經過點,與拋物線交于點,連接,,點在線段上,連接,交于點,點上,連接,交于點,若,,,求點的坐標.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】如圖,在RtAOB中,∠ABO=30°BO=4,分別以OAOB邊所在的直線建立平面直角坐標系,D點為x軸正半軸上的一點,以OD為一邊在第一象限內作等邊△ODE

          1)如圖①當E點恰好落在線段AB上時,求E點坐標;

          2)若點D從原點出發(fā)沿x軸正方向移動,設點D到原點的距離為x,△ODE與△AOB重疊部分的面積為y,當E點到達△AOB的外面,且點D在點B左側時,寫出yx的函數關系式,并寫出自變量x的取值范圍;

          3)在(1)問的條件下,將△ODE在線段OB上向右平移如圖②,圖中是否存在一條與線段OO′始終相等的線段?如果存在,請直接指出這條線段;如果不存在,請說明理由.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】定義:如果一個三角形一條邊上的高與這條邊的比值是35,那么稱這個三角形為“準黃金”三角形,這條邊就叫做這個三角形的“金底”.

          (概念感知)

          1)如圖1,在中,,,試判斷是否是“準黃金”三角形,請說明理由.

          (問題探究)

          2)如圖2是“準黃金”三角形,BC是“金底”,把沿BC翻折得到,連ABADBC的延長線于點E,若點C恰好是的重心,求的值.

          (拓展提升)

          3)如圖3,且直線之間的距離為3,“準黃金”的“金底”BC在直線上,點A在直線上.,若是鈍角,將繞點按順時針方向旋轉得到,線段于點D

          ①當時,則_________

          ②如圖4,當點B落在直線上時,求的值.

          查看答案和解析>>

          科目:初中數學 來源: 題型:

          【題目】對于⊙P及一個矩形給出如下定義:如果⊙P上存在到此矩形四個頂點距離都相等的點,那么稱⊙P是該矩形的“等距圓”.如圖,在平面直角坐標系xOy中,矩形ABCD的頂點A的坐標為(,),頂點C、Dx軸上,且OC=OD.

          (1)當⊙P的半徑為4時,

          ①在P1),P2,),P3,)中可以成為矩形ABCD的“等距圓”的圓心的是 ;

          ②如果點P在直線上,且⊙P是矩形ABCD的“等距圓”,求點P的坐標;

          (2)已知點P軸上,且⊙P是矩形ABCD的“等距圓”,如果⊙P與直線AD沒有公共點,直接寫出點P的縱坐標m的取值范圍.

          查看答案和解析>>

          同步練習冊答案