日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,AB是⊙O的直徑,∠B=∠CAD.

          (1)求證:AC是⊙O的切線;
          (2)若點E是的中點,連接AE交BC于點F,當(dāng)BD=5,CD=4時,求AF的值.
          解:(1)∵AB是⊙O的直徑,∴∠ADB=∠ADC=900
          ∵∠B=∠CAD,∠C=∠C,∴△ADC∽△BAC。
          ∴∠BAC=∠ADC=90°!郆A⊥AC。
          又∵AB是⊙O的直徑,∴AC是⊙O的切線。
          (2)∵△ADC∽△BAC(已證),∴
          ∵BD=5,CD=4,∴BC=9!,解得:AC=6。
          ∴在Rt△ACD中,,
          ∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
          ∴CA=CF=6!郉F=CA-CD=2。
          ∴在Rt△AFD中,。
          (1)證明△ADC∽△BAC,可得∠BAC=∠ADC=900,從而可判斷AC是⊙O的切線。
          (2)根據(jù)(1)所得△ADC∽△BAC,可得出CA的長度,從而判斷∠CFA=∠CAF,利用等腰三角形的性質(zhì)得出AF的長度,繼而得出DF的長,在Rt△AFD中利用勾股定理可得出AF的長。
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,在平面直角坐標(biāo)系中,以點O為圓心,半徑為2的圓與y軸交于點A,點P(4,2)是⊙O外一點,連接AP,直線PB與⊙O相切于點B,交x軸于點C.

          (1)證明PA是⊙O的切線;
          (2)求點B的坐標(biāo);
          (3)求直線AB的解析式.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          已知:如圖,AC⊙O是的直徑,BC是⊙O的弦,點P是⊙O外一點,∠PBA=∠C.

          (1)求證:PB是⊙O的切線;
          (2)若OP∥BC,且OP=8,BC=2.求⊙O的半徑.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的直徑,CD與⊙O相切于點C,DA⊥AB,DO及DO的延長線與⊙O分別相交于點E、F,EB與CF相交于點G.

          (1)求證:DA=DC;
          (2)⊙O的半徑為3,DC=4,求CG的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          如圖,半圓O與等腰直角三角形兩腰CA、CB分別切于D、E兩點,直徑FG在AB上,若BG=﹣1,則△ABC的周長為

          A、        B、6       C、          D、4

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

          如圖,點A、B、C在⊙O上,若∠C=30°,則∠AOB的度數(shù)為     °.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,已知MN是⊙O的直徑,直線PQ與⊙O相切于P點,NP平分∠MNQ.

          (1)求證:NQ⊥PQ;
          (2)若⊙O的半徑R=3,NP=,求NQ的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

          如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為BC的中點.

          (1)求證:AB=BC;
          (2)求證:四邊形BOCD是菱形.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

          (2013年四川自貢4分)如圖,點O是正六邊形的對稱中心,如果用一副三角板的角,借助點O(使該角的頂點落在點O處),把這個正六邊形的面積n等分,那么n的所有可能取值的個數(shù)是【   】
          A.4B.5C.6D.7

          查看答案和解析>>

          同步練習(xí)冊答案