日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
          探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
          探究:設△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
          (3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設∠AC C′=α(30°<α<90°(圖4);
          探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
          精英家教網(wǎng)
          分析:(1)BE=AD,可通過證三角形BEC和ACD全等來得出.
          (2)由于重合部分的面積無法直接求出,因此可用△RPQ的面積減去△RST的面積來求得(S、T為RP、RQ與AC的交點).△PRQ的面積易求得.關鍵是△RST的面積,三角形RST中,由于∠RTS=∠CTQ=60°-∠TCQ=30°,而∠R=60°,因此△RST是直角三角形,只需求出RS和ST的長即可.上面已經(jīng)求得了∠QTC=∠QCT=30°,因此RT=RQ-QT=RQ-QC=3-x,然后根據(jù)△RTS中特殊角的度數(shù)即可得出RS和ST的長,進而可得出y,x的函數(shù)關系式.
          (3)本題可通過證△CE′M和△NCC′相似來求解.
          解答:精英家教網(wǎng)解:(1)BE=AD
          證明:∵△ABC與△DCE是等邊三角形
          ∴∠ACB=∠DCE=60°,CA=CB,CE=CD
          ∴∠BCE=∠ACD
          ∴△BCE≌△ACD
          ∴BE=AD.

          (2)如圖在△CQT中
          ∵∠TCQ=30°∠RQP=60°
          ∴∠QTC=30°
          ∴∠QTC=∠TCQ
          ∴QT=QC=x
          ∴RT=3-x
          ∵∠RTS+∠R=90°
          ∴∠RST=90°
          ∴y=
          3
          4
          ×32-
          3
          8
          (3-x)2=-
          3
          8
          (3-x)2+
          9
          3
          4
          (0≤x≤3).

          (3)答:C′N•E′M的值不變,理由為:
          證明:∵∠ACB=60°
          ∴∠MCE′+∠NCC′=120°
          ∵∠CNC′+∠NCC′=120°
          ∴∠MCE′=∠CNC′
          ∵∠E′=∠C′
          ∴△E′MC∽△C′CN
          E′M
          C′C
          =
          E′C
          C′N
          ,
          ∴C′N•E′M=C′C•E′C=
          3
          2
          ×
          3
          2
          =
          9
          4
          點評:本題考查了圖形的旋轉(zhuǎn)和平移變換、等邊三角形的性質(zhì)、相似三角形的判定和性質(zhì)以及二次函數(shù)的應用等知識點,綜合性強,難度較高.
          練習冊系列答案
          相關習題

          科目:初中數(shù)學 來源: 題型:

          圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
          探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論;
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3).
          探究:設△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y精英家教網(wǎng),求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
          探究:在圖2中,線段BE與AD之間有怎樣的大小關系?試證明你的結(jié)論.
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖3);
          請問:經(jīng)過多少時間,△PQR與△ABC重疊部分的面積恰好等于
          7
          3
          4
          ?
          (3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點C落在C′E′的中點,邊BC交D′E′于點M,邊AC交D′C′于點N,設
          ∠AC C′=α(30°<α<90,圖4);
          探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和CDE疊放在一起.
          (1)固定△ABC,將△CDE繞點C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE、CE的延長線交AB于點F(圖2),線段BE與AD之間有怎樣的大小關系?證明你的結(jié)論;
          (2)固定△CDE,將△ABC移動,使頂點C落在CE的中點G,邊BG交DE于點M,邊AG交DC于點N,求證:CN•EM=EG•CG;
          (3)將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設為△PQR(圖4);探究:設△PQR移動時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學 來源: 題型:

          如圖,菱形ABCD和菱形ECGF,且B、C、G共線,若菱形ABCD和菱形ECGF的邊長分別為4和6,∠A=120°,則圖中陰影部分的面積是( 。

          查看答案和解析>>

          同步練習冊答案