日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時針旋轉(zhuǎn)30°得到△CDE,連接AD,BE,CE的延長線交AB于F(圖2).
          探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論;
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3).
          探究:設(shè)△PQR移動的時間為x秒,△PQR與△AFC重疊部分的面積為y精英家教網(wǎng),求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
          分析:(1)BE=AD,尋找證明△ADC≌△BEC(SAS)的條件.
          (2)設(shè)PR、RQ分別交AC于G、H,QC=x,由題意易得∠RGH=90°,RH=3-QH=3-QC=3-x,分析可知,△GRH是30°的直角三角形,解直角三角形可求GR,GH,可表示△GRH的面積,用△PRQ的面積-△GRH的面積.
          解答:解:(1)BE=AD.
          ∵△ABC,△CDE都是等邊三角形,
          ∴AC=BC,CD=CE,∠ACB=∠ECD=60°
          ∵∠BCE=30°,
          ∴∠ACE=30°,
          ∴∠ACD=30°
          ∴△ADC≌△BEC(SAS),
          ∴BE=AD.

          (2)設(shè)PR、RQ分別交AC于G、H,QC=x,
          ∵由(1)可知∠ACF=30°,∠PQR=60°,
          ∴∠CHQ=30°,
          ∴QH=QC,∠RHG=∠CHQ=30°,
          ∴∠RGH=90°,RH=3-QH=3-QC=3-x,
          ∴RG=
          1
          2
          (3-x),GH=
          3
          2
          (3-x),
          所以SRt△GHR=
          1
          2
          RG•GH=
          3
          8
          (3-x)2,
          而∵△C′D′E′的邊長為3,得出S△PQR=
          9
          4
          3
          ,
          ∴重疊部分面積y=
          9
          4
          3
          -
          3
          8
          (3-x)2
          即:y=-
          3
          8
          x2
          +
          3
          4
          3
          x+
          9
          8
          3
          (0≤x≤3).
          點(diǎn)評:此題綜合性較強(qiáng),考查了全等三角形的判定、等邊三角形的性質(zhì).
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
          探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
          探究:設(shè)△PQR移動的時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.
          (3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)∠AC C′=α(30°<α<90°(圖4);
          探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和C′D′E′疊放在一起(C與C′重合).
          (1)操作:固定△ABC,將△C′D′E′繞點(diǎn)C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE,CE的延長線交AB于F(圖2);
          探究:在圖2中,線段BE與AD之間有怎樣的大小關(guān)系?試證明你的結(jié)論.
          (2)操作:將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖3);
          請問:經(jīng)過多少時間,△PQR與△ABC重疊部分的面積恰好等于
          7
          3
          4

          (3)操作:圖1中△C′D′E′固定,將△ABC移動,使頂點(diǎn)C落在C′E′的中點(diǎn),邊BC交D′E′于點(diǎn)M,邊AC交D′C′于點(diǎn)N,設(shè)
          ∠AC C′=α(30°<α<90,圖4);
          探究:在圖4中,線段C′N•E′M的值是否隨α的變化而變化?如果沒有變化,請你求出C′N•E′M的值,如果有變化,請你說明理由.
          精英家教網(wǎng)

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖1是邊長分別為4
          3
          和3的兩個等邊三角形紙片ABC和CDE疊放在一起.
          (1)固定△ABC,將△CDE繞點(diǎn)C順時針旋轉(zhuǎn)30°得到△CDE,連接AD、BE、CE的延長線交AB于點(diǎn)F(圖2),線段BE與AD之間有怎樣的大小關(guān)系?證明你的結(jié)論;
          (2)固定△CDE,將△ABC移動,使頂點(diǎn)C落在CE的中點(diǎn)G,邊BG交DE于點(diǎn)M,邊AG交DC于點(diǎn)N,求證:CN•EM=EG•CG;
          (3)將圖2中的△CDE,在線段CF上沿著CF方向以每秒1個單位的速度平移,平移后的△CDE設(shè)為△PQR(圖4);探究:設(shè)△PQR移動時間為x秒,△PQR與△ABC重疊部分的面積為y,求y與x之間的函數(shù)解析式,并寫出函數(shù)自變量x的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          如圖,菱形ABCD和菱形ECGF,且B、C、G共線,若菱形ABCD和菱形ECGF的邊長分別為4和6,∠A=120°,則圖中陰影部分的面積是( 。

          查看答案和解析>>

          同步練習(xí)冊答案