日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知,在ABCEFC中,∠ABC=∠EFC90°,點(diǎn)EABC內(nèi),且∠CAE+CBE90°

          1)如圖1,當(dāng)ABCEFC均為等腰直角三角形時(shí),連接BF,

          ①求證:CAE∽△CBF

          ②若BE2,AE4,求EF的長(zhǎng);

          2)如圖2,當(dāng)ABCEFC均為一般直角三角形時(shí),若k,BE1,AE3CE4,求k的值.

          【答案】1)①見解析;②2;(2

          【解析】

          1)①先判斷出BCFACE,再判斷出,即可得出結(jié)論;

          ②先判斷出CBFCAE,進(jìn)而判斷出EBF90°,再求出BF2,最后用勾股定理求解即可得出結(jié)論;

          2)先判斷出BCFACE,再判斷出,進(jìn)而判斷出BCFACE,進(jìn)而表示出BF,再表示出EF,最后用勾股定理得,BE2+BF2EF2,建立方程求解即可得出結(jié)論.

          解:(1)①∵△ABCCEF都是等腰直角三角形,

          ∴∠ECF=∠ACB45°,

          ∴∠BCF=∠ACE

          ∵△ABCCEF都是等腰直角三角形,

          CECFACCB,

          ,

          ,

          ∴△BCF∽△ACE;

          ②由①知,BCF∽△ACE,

          ∴∠CBF=∠CAE,

          BFAE×4

          ∵∠CAE+CBE90°,

          ∴∠CBF+CBE90°,

          即:∠EBF90°

          根據(jù)勾股定理得,EF;

          2)如圖(2),連接BF

          RtABC中,tanACBk,

          同理,tanECFk,

          tanACBtanECF,

          ∴∠ACB=∠ECF

          ∴∠BCF=∠ACE,

          RtABC中,設(shè)BCm,則ABkm,

          根據(jù)勾股定理得,AC;

          RtCEF中,設(shè)CFn,則EFnk,同理,CE,

          ,

          ,

          ∵∠BCF=∠ACE

          ∴△BCF∽△ACE,

          ∴∠CBF=∠CAE,

          ∵∠CAE+CBE90°,

          ∴∠CBF+CBE90°

          即:∠EBF90°,

          ∵△BCF∽△ACE

          BFAE

          CE4,

          n,

          EF,

          RtEBF中,根據(jù)勾股定理得,BE2+BF2EF2,

          12+2=(2,

          kk(舍),

          即:k的值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知ABCD中,∠ABC60°AB4,BCmEBC邊上的動(dòng)點(diǎn),連結(jié)AE,作點(diǎn)B關(guān)于直線AE的對(duì)稱點(diǎn)F

          1)若m6,①當(dāng)點(diǎn)F恰好落在∠BCD的平分線上時(shí),求BE的長(zhǎng);

          ②當(dāng)E、C重合時(shí),求點(diǎn)F到直線BC的距離;

          2)當(dāng)點(diǎn)F到直線BC的距離d滿足條件:22≤d≤2+4,求m的取值范圍.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識(shí)競(jìng)賽,為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分取整數(shù),滿分為100分)作為樣本進(jìn)行統(tǒng)計(jì),并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請(qǐng)解答下列問題:

          成績(jī)分組

          頻數(shù)

          頻率

          50≤x<60

          8

          0.16

          60≤x<70

          12

          a

          70≤x<80

          0.5

          80≤x<90

          3

          0.06

          90≤x≤100

          b

          c

          合計(jì)

          1

          (1)寫出a,b,c的值;

          (2)請(qǐng)估計(jì)這1000名學(xué)生中有多少人的競(jìng)賽成績(jī)不低于70分;

          (3)在選取的樣本中,從競(jìng)賽成績(jī)是80分以上(含80分)的同學(xué)中隨機(jī)抽取兩名同學(xué)參加環(huán)保知識(shí)宣傳活動(dòng),求所抽取的2名同學(xué)來(lái)自同一組的概率.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知矩形ABCD,AB=4cm,BC=8cm.動(dòng)點(diǎn)P在邊BC上從點(diǎn)BC運(yùn)動(dòng),速度為1cm/s;同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿折線CDA運(yùn)動(dòng),速度為2cm/s.當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng)。設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(s),BPQ的面積為S(cm2),則描述S(cm2)與時(shí)間t(s)的函數(shù)關(guān)系的圖象大致是( )

          A.B.

          C.D.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】問題情境:如圖①,P是⊙O外的一點(diǎn),直線PO分別交⊙O于點(diǎn)A、B,可以發(fā)現(xiàn)PA是點(diǎn)P到⊙O上的點(diǎn)的最短距離.

          1)直接運(yùn)用:如圖②,在RtABC中,∠ACB90°,ACBC2,以BC為直徑的半圓交ABD,P是弧CD上的一個(gè)動(dòng)點(diǎn),連接AP,則AP的最小值是   

          2)構(gòu)造運(yùn)用:如圖③,在邊長(zhǎng)為8的菱形ABCD中,∠A60°,MAD邊的中點(diǎn),NAB邊上一動(dòng)點(diǎn),將AMN沿MN所在的直線翻折得到AMN,連接AC,請(qǐng)求出AC長(zhǎng)度的最小值.

          3)綜合運(yùn)用:如圖④,平面直角坐標(biāo)系中,分別以點(diǎn)A(﹣2,3),B3,4)為圓心,分別以1、2為半徑作⊙A、⊙B,M、N分別是⊙A、⊙B上的動(dòng)點(diǎn),Px軸上的動(dòng)點(diǎn),則PM+PN的最小值等于   

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,ABC內(nèi)接于⊙O,AB是直徑,過點(diǎn)A作直線MN,且∠MAC=∠ABC

          1)求證:MN是⊙O的切線.

          2)設(shè)D是弧AC的中點(diǎn),連結(jié)BDAC于點(diǎn)G,過點(diǎn)DDEAB于點(diǎn)E,交AC于點(diǎn)F

          ①求證:FDFG

          ②若BC3,AB5,試求AE的長(zhǎng).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為倡導(dǎo)低碳生活,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實(shí)物圖,車架檔ACCD的長(zhǎng)分別為45cm,60cm,且它們互相垂直,座桿CE的長(zhǎng)為20cm,車輪半徑28cm,點(diǎn)A,C,E在同一條直線上,且∠CAB=75°,如圖2

          1 2

          (1)求車座點(diǎn)E到地面的距離;(結(jié)果精確到1cm)

          (2)求車把點(diǎn)D到車架檔直線AB的距離.(結(jié)果精確到1cm).

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】為了了解班級(jí)學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對(duì)本班部分學(xué)生進(jìn)行了為期一個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達(dá)標(biāo),并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問題:

          1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;

          2)扇形統(tǒng)計(jì)圖中課前預(yù)習(xí)不達(dá)標(biāo)對(duì)應(yīng)的圓心角度數(shù)是   

          3)為了共同進(jìn)步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)機(jī)抽取一位同學(xué)進(jìn)行一幫一互助學(xué)習(xí),請(qǐng)用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn) A 和點(diǎn) C 分別在x 軸和 y 軸的正半軸上,OA=6,OC=4,以 OA,OC 為鄰邊作矩形 OABC 動(dòng)點(diǎn) M,N 以每秒 1 個(gè)單位長(zhǎng)度的速度分別從點(diǎn) AC 同時(shí)出發(fā),其中點(diǎn) M 沿 AO 向終點(diǎn) O 運(yùn)動(dòng),點(diǎn) N沿 CB 向終點(diǎn) B 運(yùn)動(dòng),當(dāng)兩個(gè)動(dòng)點(diǎn)運(yùn)動(dòng)了 t 秒時(shí),過點(diǎn) N NPBC,交 OB 于點(diǎn) P,連接 MP

          1)直接寫出點(diǎn) B 的坐標(biāo)為 ,直線 OB 的函數(shù)表達(dá)式為 ;

          2)記△OMP 的面積為 S,求 S t 的函數(shù)關(guān)系式;并求 t 為何值時(shí),S有最大值,并求出最大值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案