日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知:如圖,AB是⊙O的直徑,C、D為⊙O上兩點(diǎn),CF⊥AB于點(diǎn)F,CE⊥AD的延長線于點(diǎn)E,且CE=精英家教網(wǎng)CF.
          (1)求證:CE是⊙O的切線;
          (2)若AD=CD=6,求四邊形ABCD的面積.
          分析:(1)連接OC.根據(jù)角平分線性質(zhì)定理的逆定理,得∠CAE=∠CAB.根據(jù)OC=OA,得到∠CAB=∠OCA,從而得到∠CAE=∠OCA,根據(jù)內(nèi)錯(cuò)角相等,兩條直線平行,得到OC∥AE,從而根據(jù)切線的判定證明結(jié)論;
          (2)根據(jù)AD=CD,得到∠DAC=∠DCA=∠CAB,從而DC∥AB,得到四邊形AOCD是平行四邊形.根據(jù)平行四邊形的性質(zhì),得OC=AD=6,則AB=12.根據(jù)∠CAE=∠CAB,得到弧CD=弧CB,則△OCB是等邊三角形,根據(jù)等邊三角形的性質(zhì)求得CF=3
          3
          ,再根據(jù)梯形的面積公式進(jìn)行計(jì)算.
          解答:精英家教網(wǎng)解:(1)連接OC.
          ∵CF⊥AB,CE⊥AD,且CE=CF,
          ∴∠CAE=∠CAB.
          ∵OC=OA,
          ∴∠CAB=∠OCA,
          ∴∠CAE=∠OCA,
          ∴OC∥AE,
          ∴OC⊥CE,
          又∵OC是⊙O的半徑,
          ∴CE是⊙O的切線;

          (2)∵AD=CD,
          ∴∠DAC=∠DCA=∠CAB,
          ∴DC∥AB.
          ∵∠CAE=∠OCA,
          ∴OC∥AD,
          ∴四邊形AOCD是平行四邊形.
          ∴OC=AD=6,AB=12.
          ∵∠CAE=∠CAB,
          ∴弧CD=弧CB,
          ∴CD=CB=6,
          ∴△OCB是等邊三角形,
          CF=3
          3
          ,
          ∴S四邊形ABCD=
          (CD+AB)CF
          2
          =
          (6+12)•3
          3
          2
          =27
          3
          點(diǎn)評(píng):此題綜合運(yùn)用了切線的判定、角平分線性質(zhì)定理的逆定理、平行線的判定和性質(zhì)、圓周角定理的推論、等邊三角形的判定和性質(zhì),是一道綜合性較強(qiáng)的題目.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:初中數(shù)學(xué) 來源: 題型:

          22、已知:如圖,AB是⊙O的直徑,BC是和⊙O相切于點(diǎn)B的切線,⊙O的弦AD平行于OC.
          求證:DC是⊙O的切線.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2013•門頭溝區(qū)一模)已知:如圖,AB是⊙O的直徑,AC是⊙O的弦,M為AB上一點(diǎn),過點(diǎn)M作DM⊥AB,交弦AC于點(diǎn)E,交⊙O于點(diǎn)F,且DC=DE.
          (1)求證:DC是⊙O的切線;
          (2)如果DM=15,CE=10,cos∠AEM=
          513
          ,求⊙O半徑的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (1997•昆明)已知:如圖,AB是⊙O的直徑,直線MN切⊙O于點(diǎn)C,AD⊥MN于D,AD交⊙O于E,AB的延長線交MN于點(diǎn)P.求證:AC2=AE•AP.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          (2012•平谷區(qū)二模)已知,如圖,AB是⊙O的直徑,點(diǎn)E是
          AD
          的中點(diǎn),連接BE交AC于點(diǎn)G,BG的垂直平分線CF交BG于H交AB于F點(diǎn).
          (1)求證:BC是⊙O的切線;
          (2)若AB=8,BC=6,求BE的長.

          查看答案和解析>>

          科目:初中數(shù)學(xué) 來源: 題型:

          已知:如圖,AB是⊙O的直徑,BC為⊙O的切線,過點(diǎn)B的弦BD⊥OC交⊙O于點(diǎn)D,垂足為E.
          (1)求證:CD是⊙O的切線;
          (2)當(dāng)BC=BD,且BD=12cm時(shí),求圖中陰影部分的面積(結(jié)果不取近似值).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案